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C H A P T E R 1

Solution to Problem 1.1. We have

A = {2, 4, 6}, B = {4, 5, 6},

so A ∪B = {2, 4, 5, 6}, and
(A ∪B)c = {1, 3}.

On the other hand,

Ac ∩Bc = {1, 3, 5} ∩ {1, 2, 3} = {1, 3}.

Similarly, we have A ∩B = {4, 6}, and

(A ∩B)c = {1, 2, 3, 5}.

On the other hand,

Ac ∪Bc = {1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}.

Solution to Problem 1.2. (a) By using a Venn diagram it can be seen that for any
sets S and T , we have

S = (S ∩ T ) ∪ (S ∩ T c).

(Alternatively, argue that any x must belong to either T or to T c, so x belongs to S
if and only if it belongs to S ∩ T or to S ∩ T c.) Apply this equality with S = Ac and
T = B, to obtain the first relation

Ac = (Ac ∩B) ∪ (Ac ∩Bc).

Interchange the roles of A and B to obtain the second relation.

(b) By De Morgan’s law, we have

(A ∩B)c = Ac ∪Bc,

and by using the equalities of part (a), we obtain

(A∩B)c =
(
(Ac∩B)∪(Ac∩Bc)

)
∪
(
(A∩Bc)∪(Ac∩Bc)

)
= (Ac∩B)∪(Ac∩Bc)∪(A∩Bc).

(c) We have A = {1, 3, 5} and B = {1, 2, 3}, so A ∩B = {1, 3}. Therefore,

(A ∩B)c = {2, 4, 5, 6},
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and
Ac ∩B = {2}, Ac ∩Bc = {4, 6}, A ∩Bc = {5}.

Thus, the equality of part (b) is verified.

Solution to Problem 1.5. Let G and C be the events that the chosen student is
a genius and a chocolate lover, respectively. We have P(G) = 0.6, P(C) = 0.7, and
P(G∩C) = 0.4. We are interested in P(Gc ∩Cc), which is obtained with the following
calculation:

P(Gc∩Cc) = 1−P(G∪C) = 1−
(
P(G)+P(C)−P(G∩C)

)
= 1−(0.6+0.7−0.4) = 0.1.

Solution to Problem 1.6. We first determine the probabilities of the six possible
outcomes. Let a = P({1}) = P({3}) = P({5}) and b = P({2}) = P({4}) = P({6}).
We are given that b = 2a. By the additivity and normalization axioms, 1 = 3a+ 3b =
3a+ 6a = 9a. Thus, a = 1/9, b = 2/9, and P({1, 2, 3}) = 4/9.

Solution to Problem 1.7. The outcome of this experiment can be any finite sequence
of the form (a1, a2, . . . , an), where n is an arbitrary positive integer, a1, a2, . . . , an−1

belong to {1, 3}, and an belongs to {2, 4}. In addition, there are possible outcomes
in which an even number is never obtained. Such outcomes are infinite sequences
(a1, a2, . . .), with each element in the sequence belonging to {1, 3}. The sample space
consists of all possible outcomes of the above two types.

Solution to Problem 1.8. Let pi be the probability of winning against the opponent
played in the ith turn. Then, you will win the tournament if you win against the 2nd
player (probability p2) and also you win against at least one of the two other players
[probability p1 + (1 − p1)p3 = p1 + p3 − p1p3]. Thus, the probability of winning the
tournament is

p2(p1 + p3 − p1p3).

The order (1, 2, 3) is optimal if and only if the above probability is no less than the
probabilities corresponding to the two alternative orders, i.e.,

p2(p1 + p3 − p1p3) ≥ p1(p2 + p3 − p2p3),

p2(p1 + p3 − p1p3) ≥ p3(p2 + p1 − p2p1).

It can be seen that the first inequality above is equivalent to p2 ≥ p1, while the second
inequality above is equivalent to p2 ≥ p3.

Solution to Problem 1.9. (a) Since Ω = ∪n
i=1Si, we have

A =

n⋃
i=1

(A ∩ Si),

while the sets A ∩ Si are disjoint. The result follows by using the additivity axiom.

(b) The events B ∩ Cc, Bc ∩ C, B ∩ C, and Bc ∩ Cc form a partition of Ω, so by part
(a), we have

P(A) = P(A ∩B ∩ Cc) + P(A ∩Bc ∩ C) + P(A ∩B ∩ C) + P(A ∩Bc ∩ Cc). (1)
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The event A ∩B can be written as the union of two disjoint events as follows:

A ∩B = (A ∩B ∩ C) ∪ (A ∩B ∩ Cc),

so that
P(A ∩B) = P(A ∩B ∩ C) + P(A ∩B ∩ Cc). (2)

Similarly,
P(A ∩ C) = P(A ∩B ∩ C) + P(A ∩Bc ∩ C). (3)

Combining Eqs. (1)-(3), we obtain the desired result.

Solution to Problem 1.10. Since the events A ∩ Bc and Ac ∩ B are disjoint, we
have using the additivity axiom repeatedly,

P
(
(A∩Bc)∪(Ac∩B)

)
= P(A∩Bc)+P(Ac∩B) = P(A)−P(A∩B)+P(B)−P(A∩B).

Solution to Problem 1.14. (a) Each possible outcome has probability 1/36. There
are 6 possible outcomes that are doubles, so the probability of doubles is 6/36 = 1/6.

(b) The conditioning event (sum is 4 or less) consists of the 6 outcomes{
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)

}
,

2 of which are doubles, so the conditional probability of doubles is 2/6 = 1/3.

(c) There are 11 possible outcomes with at least one 6, namely, (6, 6), (6, i), and (i, 6),
for i = 1, 2, . . . , 5. Thus, the probability that at least one die is a 6 is 11/36.

(d) There are 30 possible outcomes where the dice land on different numbers. Out of
these, there are 10 outcomes in which at least one of the rolls is a 6. Thus, the desired
conditional probability is 10/30 = 1/3.

Solution to Problem 1.15. Let A be the event that the first toss is a head and
let B be the event that the second toss is a head. We must compare the conditional
probabilities P(A ∩B |A) and P(A ∩B |A ∪B). We have

P(A ∩B |A) =
P
(
(A ∩B) ∩A

)
P(A)

=
P(A ∩B)

P(A)
,

and

P(A ∩B |A ∪B) =
P
(
(A ∩B) ∩ (A ∪B)

)
P(A ∪B)

=
P(A ∩B)

P(A ∪B)
.

Since P(A ∪ B) ≥ P(A), the first conditional probability above is at least as large, so
Alice is right, regardless of whether the coin is fair or not. In the case where the coin
is fair, that is, if all four outcomes HH, HT , TH, TT are equally likely, we have

P(A ∩B)

P(A)
=

1/4

1/2
=

1

2
,

P(A ∩B)

P(A ∪B)
=

1/4

3/4
=

1

3
.

A generalization of Alice’s reasoning is that if A, B, and C are events such that
B ⊂ C and A ∩ B = A ∩ C (for example, if A ⊂ B ⊂ C), then the event A is at least
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as likely if we know that B has occurred than if we know that C has occurred. Alice’s
reasoning corresponds to the special case where C = A ∪B.

Solution to Problem 1.16. In this problem, there is a tendency to reason that since
the opposite face is either heads or tails, the desired probability is 1/2. This is, however,
wrong, because given that heads came up, it is more likely that the two-headed coin
was chosen. The correct reasoning is to calculate the conditional probability

p = P(two-headed coin was chosen |heads came up)

=
P(two-headed coin was chosen and heads came up)

P(heads came up)
.

We have

P(two-headed coin was chosen and heads came up) =
1

3
,

P(heads came up) =
1

2
,

so by taking the ratio of the above two probabilities, we obtain p = 2/3. Thus, the
probability that the opposite face is tails is 1− p = 1/3.

Solution to Problem 1.17. Let A be the event that the batch will be accepted.
Then A = A1 ∩ A2 ∩ A3 ∩ A4, where Ai, i = 1, . . . , 4, is the event that the ith item is
not defective. Using the multiplication rule, we have

P(A) = P(A1)P(A2 |A1)P(A3 |A1∩A2)P(A4 |A1∩A2∩A3) =
95

100
· 94

99
· 93

98
· 92

97
= 0.812.

Solution to Problem 1.18. Using the definition of conditional probabilities, we
have

P(A ∩B |B) =
P(A ∩B ∩B)

P(B)
=

P(A ∩B)

P(B)
= P(A |B).

Solution to Problem 1.19. Let A be the event that Alice does not find her paper
in drawer i. Since the paper is in drawer i with probability pi, and her search is
successful with probability di, the multiplication rule yields P(Ac) = pidi, so that
P(A) = 1 − pidi. Let B be the event that the paper is in drawer j. If j 6= i, then
A ∩B = B, P(A ∩B) = P(B), and we have

P(B |A) =
P(A ∩B)

P(A)
=

P(B)

P(A)
=

pj

1− pidi
.

Similarly, if i = j, we have

P(B |A) =
P(A ∩B)

P(A)
=

P(B)P(A |B)

P(A)
=
pi(1− di)

1− pidi
.

Solution to Problem 1.20. (a) Figure 1.1 provides a sequential description for the
three different strategies. Here we assume 1 point for a win, 0 for a loss, and 1/2 point
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1- pw

Figure 1.1: Sequential descriptions of the chess match histories under strategies

(i), (ii), and (iii).

for a draw. In the case of a tied 1-1 score, we go to sudden death in the next game,
and Boris wins the match (probability pw), or loses the match (probability 1− pw).

(i) Using the total probability theorem and the sequential description of Fig. 1.1(a),
we have

P(Boris wins) = p2
w + 2pw(1− pw)pw.

The term p2
w corresponds to the win-win outcome, and the term 2pw(1− pw)pw corre-

sponds to the win-lose-win and the lose-win-win outcomes.

(ii) Using Fig. 1.1(b), we have

P(Boris wins) = p2
dpw,

corresponding to the draw-draw-win outcome.

(iii) Using Fig. 1.1(c), we have

P(Boris wins) = pwpd + pw(1− pd)pw + (1− pw)p2
w.
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The term pwpd corresponds to the win-draw outcome, the term pw(1 − pd)pw corre-
sponds to the win-lose-win outcome, and the term (1− pw)p2

w corresponds to lose-win-
win outcome.

(b) If pw < 1/2, Boris has a greater probability of losing rather than winning any one
game, regardless of the type of play he uses. Despite this, the probability of winning
the match with strategy (iii) can be greater than 1/2, provided that pw is close enough
to 1/2 and pd is close enough to 1. As an example, if pw = 0.45 and pd = 0.9, with
strategy (iii) we have

P(Boris wins) = 0.45 · 0.9 + 0.452 · (1− 0.9) + (1− 0.45) · 0.452 ≈ 0.54.

With strategies (i) and (ii), the corresponding probabilities of a win can be calculated
to be approximately 0.43 and 0.36, respectively. What is happening here is that with
strategy (iii), Boris is allowed to select a playing style after seeing the result of the first
game, while his opponent is not. Thus, by being able to dictate the playing style in
each game after receiving partial information about the match’s outcome, Boris gains
an advantage.

Solution to Problem 1.21. Let p(m, k) be the probability that the starting player
wins when the jar initially contains m white and k black balls. We have, using the
total probability theorem,

p(m, k) =
m

m+ k
+

k

m+ k

(
1− p(m, k − 1)

)
= 1− k

m+ k
p(m, k − 1).

The probabilities p(m, 1), p(m, 2), . . . , p(m,n) can be calculated sequentially using this
formula, starting with the initial condition p(m, 0) = 1.

Solution to Problem 1.22. We derive a recursion for the probability pi that a white
ball is chosen from the ith jar. We have, using the total probability theorem,

pi+1 =
m+ 1

m+ n+ 1
pi +

m

m+ n+ 1
(1− pi) =

1

m+ n+ 1
pi +

m

m+ n+ 1
,

starting with the initial condition p1 = m/(m+ n). Thus, we have

p2 =
1

m+ n+ 1
· m

m+ n
+

m

m+ n+ 1
=

m

m+ n
.

More generally, this calculation shows that if pi−1 = m/(m+n), then pi = m/(m+n).
Thus, we obtain pi = m/(m+ n) for all i.

Solution to Problem 1.23. Let pi,n−i(k) denote the probability that after k ex-
changes, a jar will contain i balls that started in that jar and n− i balls that started in
the other jar. We want to find pn,0(4). We argue recursively, using the total probability
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theorem. We have

pn,0(4) =
1

n
· 1

n
· pn−1,1(3),

pn−1,1(3) = pn,0(2) + 2 · n− 1

n
· 1

n
· pn−1,1(2) +

2

n
· 2

n
· pn−2,2(2),

pn,0(2) =
1

n
· 1

n
· pn−1,1(1),

pn−1,1(2) = 2 · n− 1

n
· 1

n
· pn−1,1(1),

pn−2,2(2) =
n− 1

n
· n− 1

n
· pn−1,1(1),

pn−1,1(1) = 1.

Combining these equations, we obtain

pn,0(4) =
1

n2

(
1

n2
+

4(n− 1)2

n4
+

4(n− 1)2

n4

)
=

1

n2

(
1

n2
+

8(n− 1)2

n4

)
.

Solution to Problem 1.24. Intuitively, there is something wrong with this rationale.
The reason is that it is not based on a correctly specified probabilistic model. In
particular, the event where both of the other prisoners are to be released is not properly
accounted in the calculation of the posterior probability of release.

To be precise, let A, B, and C be the prisoners, and let A be the one who considers
asking the guard. Suppose that all prisoners are a priori equally likely to be released.
Suppose also that if B and C are to be released, then the guard chooses B or C with
equal probability to reveal to A. Then, there are four possible outcomes:

(1) A and B are to be released, and the guard says B (probability 1/3).

(2) A and C are to be released, and the guard says C (probability 1/3).

(3) B and C are to be released, and the guard says B (probability 1/6).

(4) B and C are to be released, and the guard says C (probability 1/6).

Thus,

P(A is to be released | guard says B) =
P(A is to be released and guard says B)

P(guard says B)

=
1/3

1/3 + 1/6
=

2

3
.

Similarly,

P(A is to be released | guard says C) =
2

3
.

Thus, regardless of the identity revealed by the guard, the probability that A is released
is equal to 2/3, the a priori probability of being released.

Solution to Problem 1.25. Let m and m be the larger and the smaller of the two
amounts, respectively. Consider the three events

A = {X < m), B = {m < X < m), C = {m < X).
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Let A (or B or C) be the event that A (or B or C, respectively) occurs and you first
select the envelope containing the larger amount m. Let A (or B or C) be the event
that A (or B or C, respectively) occurs and you first select the envelope containing the
smaller amount m. Finally, consider the event

W = {you end up with the envelope containing m}.

We want to determine P(W ) and check whether it is larger than 1/2 or not.
By the total probability theorem, we have

P(W |A) =
1

2

(
P(W |A) + P(W |A)

)
=

1

2
(1 + 0) =

1

2
,

P(W |B) =
1

2

(
P(W |B) + P(W |B)

)
=

1

2
(1 + 1) = 1,

P(W |C) =
1

2

(
P(W |C) + P(W |C)

)
=

1

2
(0 + 1) =

1

2
.

Using these relations together with the total probability theorem, we obtain

P(W ) = P(A)P(W |A) + P(B)P(W |B) + P(C)P(W |C)

=
1

2

(
P(A) + P(B) + P(C)

)
+

1

2
P(B)

=
1

2
+

1

2
P(B).

Since P(B) > 0 by assumption, it follows that P(W ) > 1/2, so your friend is correct.

Solution to Problem 1.26. (a) We use the formula

P(A |B) =
P(A ∩B)

P(B)
=

P(A)P(B |A)

P(B)
.

Since all crows are black, we have P(B) = 1 − q. Furthermore, P(A) = p. Finally,
P(B |A) = 1 − q = P(B), since the probability of observing a (black) crow is not
affected by the truth of our hypothesis. We conclude that P(A |B) = P(A) = p. Thus,
the new evidence, while compatible with the hypothesis “all cows are white,” does not
change our beliefs about its truth.

(b) Once more,

P(A |C) =
P(A ∩ C)

P(C)
=

P(A)P(C |A)

P(C)
.

Given the event A, a cow is observed with probability q, and it must be white. Thus,
P(C |A) = q. Given the event Ac, a cow is observed with probability q, and it is white
with probability 1/2. Thus, P(C |Ac) = q/2. Using the total probability theorem,

P(C) = P(A)P(C |A) + P(Ac)P(C |Ac) = pq + (1− p)
q

2
.

Hence,

P(A |C) =
pq

pq + (1− p)
q

2

=
2p

1 + p
> p.
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Thus, the observation of a white cow makes the hypothesis “all cows are white” more
likely to be true.

Solution to Problem 1.27. Since Bob tosses one more coin that Alice, it is im-
possible that they toss both the same number of heads and the same number of tails.
So Bob tosses either more heads than Alice or more tails than Alice (but not both).
Since the coins are fair, these events are equally likely by symmetry, so both events
have probability 1/2.

An alternative solution is to argue that if Alice and Bob are tied after 2n tosses,
they are equally likely to win. If they are not tied, then their scores differ by at least 2,
and toss 2n+1 will not change the final outcome. This argument may also be expressed
algebraically by using the total probability theorem. Let B be the event that Bob tosses
more heads. Let X be the event that after each has tossed n of their coins, Bob has
more heads than Alice, let Y be the event that under the same conditions, Alice has
more heads than Bob, and let Z be the event that they have the same number of heads.
Since the coins are fair, we have P(X) = P(Y ), and also P(Z) = 1 − P(X) − P(Y ).
Furthermore, we see that

P(B |X) = 1, P(B |Y ) = 0, P(B |Z) =
1

2
.

Now we have, using the total probability theorem,

P(B) = P(X) ·P(B |X) + P(Y ) ·P(B |Y ) + P(Z) ·P(B |Z)

= P(X) +
1

2
·P(Z)

=
1

2
·
(
P(X) + P(Y ) + P(Z)

)
=

1

2
.

as required.

Solution to Problem 1.30. Consider the sample space for the hunter’s strategy.
The events that lead to the correct path are:

(1) Both dogs agree on the correct path (probability p2, by independence).

(2) The dogs disagree, dog 1 chooses the correct path, and hunter follows dog 1
[probability p(1− p)/2].

(3) The dogs disagree, dog 2 chooses the correct path, and hunter follows dog 2
[probability p(1− p)/2].

The above events are disjoint, so we can add the probabilities to find that under the
hunter’s strategy, the probability that he chooses the correct path is

p2 +
1

2
p(1− p) +

1

2
p(1− p) = p.

On the other hand, if the hunter lets one dog choose the path, this dog will also choose
the correct path with probability p. Thus, the two strategies are equally effective.
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Solution to Problem 1.31. (a) Let A be the event that a 0 is transmitted. Using
the total probability theorem, the desired probability is

P(A)(1− ε0) +
(
1−P(A)

)
(1− ε1) = p(1− ε0) + (1− p)(1− ε1).

(b) By independence, the probability that the string 1011 is received correctly is

(1− ε0)(1− ε1)
3.

(c) In order for a 0 to be decoded correctly, the received string must be 000, 001, 010,
or 100. Given that the string transmitted was 000, the probability of receiving 000 is
(1 − ε0)

3, and the probability of each of the strings 001, 010, and 100 is ε0(1 − ε0)
2.

Thus, the probability of correct decoding is

3ε0(1− ε0)
2 + (1− ε0)

3.

(d) When the symbol is 0, the probabilities of correct decoding with and without the
scheme of part (c) are 3ε0(1 − ε0)

2 + (1 − ε0)
3 and 1 − ε0, respectively. Thus, the

probability is improved with the scheme of part (c) if

3ε0(1− ε0)
2 + (1− ε0)

3 > (1− ε0),

or
(1− ε0)(1 + 2ε0) > 1,

which is equivalent to ε0 < 1/2.

(e) Using Bayes’ rule, we have

P(0 | 101) =
P(0)P(101 | 0)

P(0)P(101 | 0) + P(1)P(101 | 1)
.

The probabilities needed in the above formula are

P(0) = p, P(1) = 1− p, P(101 | 0) = ε20(1− ε0), P(101 | 1) = ε1(1− ε1)
2.

Solution to Problem 1.32. The answer to this problem is not unique and depends
on the assumptions we make on the reproductive strategy of the king’s parents.

Suppose that the king’s parents had decided to have exactly two children and
then stopped. There are four possible and equally likely outcomes, namely BB, GG,
BG, and GB (B stands for “boy” and G stands for “girl”). Given that at least one
child was a boy (the king), the outcome GG is eliminated and we are left with three
equally likely outcomes (BB, BG, and GB). The probability that the sibling is male
(the conditional probability of BB) is 1/3 .

Suppose on the other hand that the king’s parents had decided to have children
until they would have a male child. In that case, the king is the second child, and the
sibling is female, with certainty.
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Solution to Problem 1.33. Flip the coin twice. If the outcome is heads-tails,
choose the opera. if the outcome is tails-heads, choose the movies. Otherwise, repeat
the process, until a decision can be made. Let Ak be the event that a decision was
made at the kth round. Conditional on the event Ak, the two choices are equally likely,
and we have

P(opera) =

∞∑
k=1

P(opera |Ak)P(Ak) =

∞∑
k=1

1

2
P(Ak) =

1

2
.

We have used here the property
∑∞

k=0
P(Ak) = 1, which is true as long as P(heads) > 0

and P(tails) > 0.

Solution to Problem 1.34. The system may be viewed as a series connection of
three subsystems, denoted 1, 2, and 3 in Fig. 1.19 in the text. The probability that the
entire system is operational is p1p2p3, where pi is the probability that subsystem i is
operational. Using the formulas for the probability of success of a series or a parallel
system given in Example 1.24, we have

p1 = p, p3 = 1− (1− p)2,

and
p2 = 1− (1− p)

(
1− p

(
1− (1− p)3

))
.

Solution to Problem 1.35. Let Ai be the event that exactly i components are
operational. The probability that the system is operational is the probability of the
union ∪n

i=kAi, and since the Ai are disjoint, it is equal to

n∑
i=k

P(Ai) =

n∑
i=k

p(i),

where p(i) are the binomial probabilities. Thus, the probability of an operational
system is

n∑
i=k

(
n

i

)
pi(1− p)n−i.

Solution to Problem 1.36. (a) Let A denote the event that the city experiences a
black-out. Since the power plants fail independent of each other, we have

P(A) =

n∏
i=1

pi.

(b) There will be a black-out if either all n or any n− 1 power plants fail. These two
events are disjoint, so we can calculate the probability P(A) of a black-out by adding
their probabilities:

P(A) =

n∏
i=1

pi +

n∑
i=1

(
(1− pi)

∏
j 6=i

pj

)
.
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Here, (1− pi)
∏

j 6=i
pj is the probability that n− 1 plants have failed and plant i is the

one that has not failed.

Solution to Problem 1.37. The probability that k1 voice users and k2 data users
simultaneously need to be connected is p1(k1)p2(k2), where p1(k1) and p2(k2) are the
corresponding binomial probabilities, given by

pi(ki) =

(
ni

ki

)
pki

i (1− pi)
ni−ki , i = 1, 2.

The probability that more users want to use the system than the system can
accommodate is the sum of all products p1(k1)p2(k2) as k1 and k2 range over all possible
values whose total bit rate requirement k1r1+k2r2 exceeds the capacity c of the system.
Thus, the desired probability is ∑

{(k1,k2) | k1r1+k2r2>c, k1≤n1, k2≤n2}

p1(k1)p2(k2).

Solution to Problem 1.38. We have

pT = P(at least 6 out of the 8 remaining holes are won by Telis),

pW = P(at least 4 out of the 8 remaining holes are won by Wendy).

Using the binomial formulas,

pT =

8∑
k=6

(
8

k

)
pk(1− p)8−k, pW =

8∑
k=4

(
8

k

)
(1− p)kp8−k.

The amount of money that Telis should get is 10 · pT /(pT + pW ) dollars.

Solution to Problem 1.39. Let the event A be the event that the professor teaches
her class, and let B be the event that the weather is bad. We have

P(A) = P(B)P(A |B) + P(Bc)P(A |Bc),

and

P(A |B) =

n∑
i=k

(
n

i

)
pi

b(1− pb)
n−i,

P(A |Bc) =

n∑
i=k

(
n

i

)
pi

g(1− pg)n−i.

Therefore,

P(A) = P(B)

n∑
i=k

(
n

i

)
pi

b(1− pb)
n−i +

(
1−P(B)

) n∑
i=k

(
n

i

)
pi

g(1− pg)n−i.

13



Solution to Problem 1.40. Let A be the event that the first n− 1 tosses produce
an even number of heads, and let E be the event that the nth toss is a head. We can
obtain an even number of heads in n tosses in two distinct ways: 1) there is an even
number of heads in the first n − 1 tosses, and the nth toss results in tails: this is the
event A∩Ec; 2) there is an odd number of heads in the first n− 1 tosses, and the nth
toss results in heads: this is the event Ac ∩ E. Using also the independence of A and
E,

qn = P
(
(A ∩ Ec) ∪ (Ac ∩ E)

)
= P(A ∩ Ec) + P(Ac ∩ E)

= P(A)P(Ec) + P(Ac)P(E)

= (1− p)qn−1 + p(1− qn−1).

We now use induction. For n = 0, we have q0 = 1, which agrees with the given
formula for qn. Assume, that the formula holds with n replaced by n− 1, i.e.,

qn−1 =
1 + (1− 2p)n−1

2
.

Using this equation, we have

qn = p(1− qn−1) + (1− p)qn−1

= p+ (1− 2p)qn−1

= p+ (1− 2p)
1 + (1− 2p)n−1

2

=
1 + (1− 2p)n

2
,

so the given formula holds for all n.

Solution to Problem 1.41. We have

P(N = n) = P(A1,n−1 ∩An,n) = P(A1,n−1)P(An,n |A1,n−1),

where for i ≤ j, Ai,j is the event that contestant i’s number is the smallest of the
numbers of contestants 1, . . . , j. We also have

P(A1,n−1) =
1

n− 1
.

We claim that

P(An,n |A1,n−1) = P(An,n) =
1

n
.

The reason is that by symmetry, we have

P(An,n |Ai,n−1) = P(An,n |A1,n−1), i = 1, . . . , n− 1,

while by the total probability theorem,

P(An,n) =

n−1∑
i=1

P(Ai,n−1)P(An,n |Ai,n−1)

= P(An,n |A1,n−1)

n−1∑
i=1

P(Ai,n−1)

= P(An,n |A1,n−1).
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Hence

P(N = n) =
1

n− 1
· 1

n
.

An alternative solution is also possible, using the counting methods developed in
Section 1.6. Let us fix a particular choice of n. Think of an outcome of the experiment
as an ordering of the values of the n contestants, so that there are n! equally likely
outcomes. The event {N = n} occurs if and only if the first contestant’s number is
smallest among the first n − 1 contestants, and contestant n’s number is the smallest
among the first n contestants. This event can occur in (n− 2)! different ways, namely,
all the possible ways of ordering contestants 2, . . . , n− 1. Thus, the probability of this
event is (n− 2)!/n! = 1/(n(n− 1)), in agreement with the previous solution.

Solution to Problem 1.49. A sum of 11 is obtained with the following 6 combina-
tions:

(6, 4, 1) (6, 3, 2) (5, 5, 1) (5, 4, 2) (5, 3, 3) (4, 4, 3).

A sum of 12 is obtained with the following 6 combinations:

(6, 5, 1) (6, 4, 2) (6, 3, 3) (5, 5, 2) (5, 4, 3) (4, 4, 4).

Each combination of 3 distinct numbers corresponds to 6 permutations, while each
combination of 3 numbers, two of which are equal, corresponds to 3 permutations.
Counting the number of permutations in the 6 combinations corresponding to a sum
of 11, we obtain 6 + 6 + 3 + 6 + 3 + 3 = 27 permutations. Counting the number of
permutations in the 6 combinations corresponding to a sum of 12, we obtain 6 + 6 +
3 + 3 + 6 + 1 = 25 permutations. Since all permutations are equally likely, a sum of 11
is more likely than a sum of 12.

Note also that the sample space has 63 = 216 elements, so we have P(11) =
27/216, P(12) = 25/216.

Solution to Problem 1.50. The sample space consists of all possible choices for
the birthday of each person. Since there are n persons, and each has 365 choices
for their birthday, the sample space has 365n elements. Let us now consider those
choices of birthdays for which no two persons have the same birthday. Assuming that
n ≤ 365, there are 365 choices for the first person, 364 for the second, etc., for a total
of 365 · 364 · · · (365− n+ 1). Thus,

P(no two birthdays coincide) =
365 · 364 · · · (365− n+ 1)

365n
.

It is interesting to note that for n as small as 23, the probability that there are two
persons with the same birthday is larger than 1/2.

Solution to Problem 1.51. (a) We number the red balls from 1 to m, and the
white balls from m + 1 to m + n. One possible sample space consists of all pairs of
integers (i, j) with 1 ≤ i, j ≤ m+ n and i 6= j. The total number of possible outcomes
is (m+ n)(m+ n− 1). The number of outcomes corresponding to red-white selection,
(i.e., i ∈ {1, . . . ,m} and j ∈ {m + 1, . . . ,m + n}) is mn. The number of outcomes
corresponding to white-red selection, (i.e., i ∈ {m+ 1, . . . ,m+ n} and j ∈ {1, . . . ,m})
is also mn. Thus, the desired probability that the balls are of different color is

2mn

(m+ n)(m+ n− 1)
.
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Another possible sample space consists of all the possible ordered color pairs, i.e.,
{RR,RW,WR,WW}. We then have to calculate the probability of the event {RW,WR}.
We consider a sequential description of the experiment, i.e., we first select the first ball
and then the second. In the first stage, the probability of a red ball is m/(m+n). In the
second stage, the probability of a red ball is either m/(m+n−1) or (m−1)/(m+n−1)
depending on whether the first ball was white or red, respectively. Therefore, using the
multiplication rule, we have

P(RR) =
m

m+ n
· m− 1

m− 1 + n
, P(RW ) =

m

m+ n
· n

m− 1 + n
,

P(WR) =
n

m+ n
· m

m+ n− 1
, P(WW ) =

n

m+ n
· n− 1

m+ n− 1
.

The desired probability is

P
(
{RW,WR}

)
= P(RW ) + P(WR)

=
m

m+ n
· n

m− 1 + n
+

n

m+ n
· m

m+ n− 1

=
2mn

(m+ n)(m+ n− 1)
.

(b) We calculate the conditional probability of all balls being red, given any of the
possible values of k. We have P(R | k = 1) = m/(m + n) and, as found in part (a),
P(RR | k = 2) = m(m − 1)/(m + n)(m − 1 + n). Arguing sequentially as in part (a),
we also have P(RRR | k = 3) = m(m − 1)(m − 2)/(m + n)(m − 1 + n)(m − 2 + n).
According to the total probability theorem, the desired answer is

1

3

(
m

m+ n
+

m(m− 1)

(m+ n)(m− 1 + n)
+

m(m− 1)(m− 2)

(m+ n)(m− 1 + n)(m− 2 + n)

)
.

Solution to Problem 1.52. The probability that the 13th card is the first king to
be dealt is the probability that out of the first 13 cards to be dealt, exactly one was a
king, and that the king was dealt last. Now, given that exactly one king was dealt in
the first 13 cards, the probability that the king was dealt last is just 1/13, since each
“position” is equally likely. Thus, it remains to calculate the probability that there
was exactly one king in the first 13 cards dealt. To calculate this probability we count
the “favorable” outcomes and divide by the total number of possible outcomes. We
first count the favorable outcomes, namely those with exactly one king in the first 13
cards dealt. We can choose a particular king in 4 ways, and we can choose the other
12 cards in

(
48
12

)
ways, therefore there are 4 ·

(
48
12

)
favorable outcomes. There are

(
52
13

)
total outcomes, so the desired probability is

1

13
·
4 ·
(

48

12

)
(

52

13

) .

For an alternative solution, we argue as in Example 1.10. The probability that
the first card is not a king is 48/52. Given that, the probability that the second is
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not a king is 47/51. We continue similarly until the 12th card. The probability that
the 12th card is not a king, given that none of the preceding 11 was a king, is 37/41.
(There are 52−11 = 41 cards left, and 48−11 = 37 of them are not kings.) Finally, the
conditional probability that the 13th card is a king is 4/40. The desired probability is

48 · 47 · · · 37 · 4
52 · 51 · · · 41 · 40

.

Solution to Problem 1.53. Suppose we label the classes A, B, and C. The proba-
bility that Joe and Jane will both be in class A is the number of possible combinations
for class A that involve both Joe and Jane, divided by the total number of combinations
for class A. Therefore, this probability is(

88

28

)
(

90

30

) .
Since there are three classes, the probability that Joe and Jane end up in the same
class is

3 ·

(
88

28

)
(

90

30

) .
A much simpler solution is as follows. We place Joe in one class. Regarding Jane,

there are 89 possible “slots”, and only 29 of them place her in the same class as Joe.
Thus, the answer is 29/89, which turns out to agree with the answer obtained earlier.

Solution to Problem 1.54. (a) Since the cars are all distinct, there are 20! ways to
line them up.

(b) To find the probability that the cars will be parked so that they alternate, we
count the number of “favorable” outcomes, and divide by the total number of possible
outcomes found in part (a). We count in the following manner. We first arrange the
US cars in an ordered sequence (permutation). We can do this in 10! ways, since there
are 10 distinct cars. Similarly, arrange the foreign cars in an ordered sequence, which
can also be done in 10! ways. Finally, interleave the two sequences. This can be done
in two different ways, since we can let the first car be either US-made or foreign. Thus,
we have a total of 2 · 10! · 10! possibilities, and the desired probability is

2 · 10! · 10!

20!
.

Note that we could have solved the second part of the problem by neglecting the fact
that the cars are distinct. Suppose the foreign cars are indistinguishable, and also that
the US cars are indistinguishable. Out of the 20 available spaces, we need to choose
10 spaces in which to place the US cars, and thus there are

(
20
10

)
possible outcomes.

Out of these outcomes, there are only two in which the cars alternate, depending on
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whether we start with a US or a foreign car. Thus, the desired probability is 2/
(
20
10

)
,

which coincides with our earlier answer.

Solution to Problem 1.55. We count the number of ways in which we can safely
place 8 distinguishable rooks, and then divide this by the total number of possibilities.
First we count the number of favorable positions for the rooks. We will place the rooks
one by one on the 8 × 8 chessboard. For the first rook, there are no constraints, so
we have 64 choices. Placing this rook, however, eliminates one row and one column.
Thus, for the second rook, we can imagine that the illegal column and row have been
removed, thus leaving us with a 7×7 chessboard, and with 49 choices. Similarly, for the
third rook we have 36 choices, for the fourth 25, etc. In the absence of any restrictions,
there are 64 · 63 · · · 57 = 64!/56! ways we can place 8 rooks, so the desired probability
is

64 · 49 · 36 · 25 · 16 · 9 · 4
64!

56!

.

Solution to Problem 1.56. (a) There are
(
8
4

)
ways to pick 4 lower level classes, and(

10
3

)
ways to choose 3 higher level classes, so there are(

8

4

)(
10

3

)
valid curricula.

(b) This part is more involved. We need to consider several different cases:

(i) Suppose we do not choose L1. Then both L2 and L3 must be chosen; otherwise
no higher level courses would be allowed. Thus, we need to choose 2 more lower
level classes out of the remaining 5, and 3 higher level classes from the available
5. We then obtain

(
5
2

)(
5
3

)
valid curricula.

(ii) If we choose L1 but choose neither L2 nor L3, we have
(
5
3

)(
5
3

)
choices.

(iii) If we choose L1 and choose one of L2 or L3, we have 2 ·
(
5
2

)(
5
3

)
choices. This is

because there are two ways of choosing between L2 and L3,
(
5
2

)
ways of choosing

2 lower level classes from L4, . . . , L8, and
(
5
3

)
ways of choosing 3 higher level

classes from H1, . . . , H5.

(iv) Finally, if we choose L1, L2, and L3, we have
(
5
1

)(
10
3

)
choices.

Note that we are not double counting, because there is no overlap in the cases we are
considering, and furthermore we have considered every possible choice. The total is
obtained by adding the counts for the above four cases.

Solution to Problem 1.57. Let us fix the order in which letters appear in the
sentence. There are 26! choices, corresponding to the possible permutations of the 26-
letter alphabet. Having fixed the order of the letters, we need to separate them into
words. To obtain 6 words, we need to place 5 separators (“blanks”) between the letters.
With 26 letters, there are 25 possible positions for these blanks, and the number of
choices is

(
25
5

)
. Thus, the desired number of sentences is 25!

(
25
5

)
. Generalizing, the

number of sentences consisting of w nonempty words using exactly once each letter
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from a l-letter alphabet is equal to

l!

(
l − 1

w − 1

)
.

Solution to Problem 1.58. (a) The sample space consists of all ways of drawing 7
elements out of a 52-element set, so it contains

(
52
7

)
possible outcomes. Let us count

those outcomes that involve exactly 3 aces. We are free to select any 3 out of the 4
aces, and any 4 out of the 48 remaining cards, for a total of

(
4
3

)(
48
4

)
choices. Thus,

P(7 cards include exactly 3 aces) =

(
4

3

)(
48

4

)
(

52

7

) .

(b) Proceeding similar to part (a), we obtain

P(7 cards include exactly 2 kings) =

(
4

2

)(
48

5

)
(

52

7

) .

(c) If A and B stand for the events in parts (a) and (b), respectively, we are looking
for P(A ∪ B) = P(A) + P(B) − P(A ∩ B). The event A ∩ B (having exactly 3 aces
and exactly 2 kings) can occur by choosing 3 out of the 4 available aces, 2 out of the 4
available kings, and 2 more cards out of the remaining 44. Thus, this event consists of(
4
3

)(
4
2

)(
44
2

)
distinct outcomes. Hence,

P(7 cards include 3 aces and/or 2 kings) =

(
4

3

)(
48

4

)
+

(
4

2

)(
48

5

)
−
(

4

3

)(
4

2

)(
44

2

)
(

52

7

) .

Solution to Problem 1.59. Clearly if n > m, or n > k, or m − n > 100 − k, the
probability must be zero. If n ≤ m, n ≤ k, and m − n ≤ 100 − k, then we can find
the probability that the test drive found n of the 100 cars defective by counting the
total number of size m subsets, and then the number of size m subsets that contain n
lemons. Clearly, there are

(
100
m

)
different subsets of size m. To count the number of size

m subsets with n lemons, we first choose n lemons from the k available lemons, and
then choose m− n good cars from the 100− k available good cars. Thus, the number
of ways to choose a subset of size m from 100 cars, and get n lemons, is(

k

n

)(
100− k

m− n

)
,
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and the desired probability is (
k

n

)(
100− k

m− n

)
(

100

m

) .

Solution to Problem 1.60. The size of the sample space is the number of different
ways that 52 objects can be divided in 4 groups of 13, and is given by the multinomial
formula

52!

13! 13! 13! 13!
.

There are 4! different ways of distributing the 4 aces to the 4 players, and there are

48!

12! 12! 12! 12!

different ways of dividing the remaining 48 cards into 4 groups of 12. Thus, the desired
probability is

4!
48!

12! 12! 12! 12!
52!

13! 13! 13! 13!

.

An alternative solution can be obtained by considering a different, but proba-
bilistically equivalent method of dealing the cards. Each player has 13 slots, each one
of which is to receive one card. Instead of shuffling the deck, we place the 4 aces at
the top, and start dealing the cards one at a time, with each free slot being equally
likely to receive the next card. For the event of interest to occur, the first ace can go
anywhere; the second can go to any one of the 39 slots (out of the 51 available) that
correspond to players that do not yet have an ace; the third can go to any one of the
26 slots (out of the 50 available) that correspond to the two players that do not yet
have an ace; and finally, the fourth, can go to any one of the 13 slots (out of the 49
available) that correspond to the only player who does not yet have an ace. Thus, the
desired probability is

39 · 26 · 13

51 · 50 · 49
.

By simplifying our previous answer, it can be checked that it is the same as the one
obtained here, thus corroborating the intuitive fact that the two different ways of
dealing the cards are probabilistically equivalent.
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