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Solution to Problem 2.1. Let X be the number of points the MIT team earns over
the weekend. We have

P(X = 0) = 0.6 · 0.3 = 0.18,

P(X = 1) = 0.4 · 0.5 · 0.3 + 0.6 · 0.5 · 0.7 = 0.27,

P(X = 2) = 0.4 · 0.5 · 0.3 + 0.6 · 0.5 · 0.7 + 0.4 · 0.5 · 0.7 · 0.5 = 0.34,

P(X = 3) = 0.4 · 0.5 · 0.7 · 0.5 + 0.4 · 0.5 · 0.7 · 0.5 = 0.14,

P(X = 4) = 0.4 · 0.5 · 0.7 · 0.5 = 0.07,

P(X > 4) = 0.

Solution to Problem 2.2. The number of guests that have the same birthday as
you is binomial with p = 1/365 and n = 499. Thus the probability that exactly one
other guest has the same birthday is(

499

1

)
1

365

(
364

365

)498

≈ 0.3486.

Let λ = np = 499/365 ≈ 1.367. The Poisson approximation is e−λλ = e−1.367 · 1.367 ≈
0.3483, which closely agrees with the correct probability based on the binomial.

Solution to Problem 2.3. (a) Let L be the duration of the match. If Fischer
wins a match consisting of L games, then L− 1 draws must first occur before he wins.
Summing over all possible lengths, we obtain

P(Fischer wins) =

10∑
l=1

(0.3)l−1(0.4) = 0.571425.

(b) The match has length L with L < 10, if and only if (L− 1) draws occur, followed
by a win by either player. The match has length L = 10 if and only if 9 draws occur.
The probability of a win by either player is 0.7. Thus

pL(l) = P(L = l) =

{
(0.3)l−1(0.7), l = 1, . . . , 9,
(0.3)9, l = 10,
0, otherwise.

Solution to Problem 2.4. (a) Let X be the number of modems in use. For k < 50,
the probability that X = k is the same as the probability that k out of 1000 customers
need a connection:

pX(k) =

(
1000

k

)
(0.01)k(0.99)1000−k, k = 0, 1, . . . , 49.
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The probability that X = 50, is the same as the probability that 50 or more out of
1000 customers need a connection:

pX(50) =

1000∑
k=50

(
1000

k

)
(0.01)k(0.99)1000−k.

(b) By approximating the binomial with a Poisson with parameter λ = 1000 ·0.01 = 10,
we have

pX(k) = e−10 10k

k!
, k = 0, 1, . . . , 49,

pX(50) =

1000∑
k=50

e−10 10k

k!
.

(c) Let A be the event that there are more customers needing a connection than there
are modems. Then,

P(A) =

1000∑
k=51

(
1000

k

)
(0.01)k(0.99)1000−k.

With the Poisson approximation, P(A) is estimated by

1000∑
k=51

e−10 10k

k!
.

Solution to Problem 2.5. (a) Let X be the number of packets stored at the end of
the first slot. For k < b, the probability that X = k is the same as the probability that
k packets are generated by the source:

pX(k) = e−λ λ
k

k!
, k = 0, 1, . . . , b− 1,

while

pX(b) =

∞∑
k=b

e−λ λ
k

k!
= 1−

b−1∑
k=0

e−λ λ
k

k!
.

Let Y be the number of number of packets stored at the end of the second
slot. Since min{X, c} is the number of packets transmitted in the second slot, we have
Y = X −min{X, c}. Thus,

pY (0) =

c∑
k=0

pX(k) =

c∑
k=0

e−λ λ
k

k!
,

pY (k) = pX(k + c) = e−λ λk+c

(k + c)!
, k = 1, . . . , b− c− 1,
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pY (b− c) = pX(b) = 1−
b−1∑
k=0

e−λ λ
k

k!
.

(b) The probability that some packets get discarded during the first slot is the same as
the probability that more than b packets are generated by the source, so it is equal to

∞∑
k=b+1

e−λ λ
k

k!
,

or

1−
b∑

k=0

e−λ λ
k

k!
.

Solution to Problem 2.6. We consider the general case of part (b), and we show
that p > 1/2 is a necessary and sufficient condition for n = 2k + 1 games to be better
than n = 2k − 1 games. To prove this, let N be the number of Celtics’ wins in the
first 2k− 1 games. If A denotes the event that the Celtics win with n = 2k+ 1, and B
denotes the event that the Celtics win with n = 2k − 1, then

P(A) = P(N ≥ k + 1) + P(N = k) ·
(
1− (1− p)2

)
+ P(N = k − 1) · p2,

P(B) = P(N ≥ k) = P(N = k) + P(N ≥ k + 1),

and therefore

P(A)−P(B) = P(N = k − 1) · p2 −P(N = k) · (1− p)2

=

(
2k − 1

k − 1

)
pk−1(1− p)kp2 −

(
2k − 1

k

)
(1− p)2pk(1− p)k−1

=
(2k − 1)!

(k − 1)! k!
pk(1− p)k(2p− 1).

It follows that P(A) > P(B) if and only if p > 1
2
. Thus, a longer series is better for

the better team.

Solution to Problem 2.7. Let random variable X be the number of trials you need
to open the door, and let Ki be the event that the ith key selected opens the door.

(a) In case (1), we have

pX(1) = P(K1) =
1

5
,

pX(2) = P(Kc
1)P(K2 |Kc

1) =
4

5
· 1

4
=

1

5
,

pX(3) = P(Kc
1)P(Kc

2 |Kc
1)P(K3 |Kc

1 ∩Kc
2) =

4

5
· 3

4
· 1

3
=

1

5
.

Proceeding similarly, we see that the PMF of X is

pX(x) =
1

5
, x = 1, 2, 3, 4, 5.
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We can also view the problem as ordering the keys in advance and then trying them in
succession, in which case the probability of any of the five keys being correct is 1/5.

In case (2), X is a geometric random variable with p = 1/5, and its PMF is

pX(k) =
1

5
·
(

4

5

)k−1

, k ≥ 1.

(b) In case (1), we have

pX(1) = P(K1) =
2

10
,

pX(2) = P(Kc
1)P(K2 |Kc

1) =
8

10
· 2

9
,

pX(3) = P(Kc
1)P(Kc

2 |Kc
1)P(K3 |Kc

1 ∩Kc
2) =

8

10
· 7

9
· 2

8
=

7

10
· 2

9
.

Proceeding similarly, we see that the PMF of X is

pX(x) =
2 · (10− x)

90
, x = 1, 2, . . . , 10.

Consider now an alternative line of reasoning to derive the PMF of X. If we
view the problem as ordering the keys in advance and then trying them in succession,
the probability that the number of trials required is x is the probability that the first
x− 1 keys do not contain either of the two correct keys and the xth key is one of the
correct keys. We can count the number of ways for this to happen and divide by the
total number of ways to order the keys to determine pX(x). The total number of ways
to order the keys is 10! For the xth key to be the first correct key, the other key must
be among the last 10 − x keys, so there are 10 − x spots in which it can be located.
There are 8! ways in which the other 8 keys can be in the other 8 locations. We must
then multiply by two since either of the two correct keys could be in the xth position.
We therefore have 2 · 10− x · 8! ways for the xth key to be the first correct one and

pX(x) =
2 · (10− x)8!

10!
=

2 · (10− x)

90
, x = 1, 2, . . . , 10,

as before.
In case (2), X is again a geometric random variable with p = 1/5.

Solution to Problem 2.8. For k = 0, 1, . . . , n− 1, we have

pX(k + 1)

pX(k)
=

(
n

k + 1

)
pk+1(1− p)n−k−1(

n

k

)
pk(1− p)n−k

=
p

1− p
· n− k

k + 1
.

Solution to Problem 2.9. For k = 1, . . . , n, we have

pX(k)

pX(k − 1)
=

(
n

k

)
pk(1− p)n−k(

n

k − 1

)
pk−1(1− p)n−k+1

=
(n− k + 1)p

k(1− p)
=

(n+ 1)p− kp

k − kp
.
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If k ≤ k∗, then k ≤ (n+1)p, or equivalently k−kp ≤ (n+1)p−kp, so that the above ratio
is greater than or equal to 1. It follows that pX(k) is monotonically nondecreasing. If
k > k∗, the ratio is less than one, and pX(k) is monotonically decreasing, as required.

Solution to Problem 2.10. Using the expression for the Poisson PMF, we have, for
k ≥ 1,

pX(k)

pX(k − 1)
=
λk · e−λ

k!
· (k − 1)!

λk−1 · e−λ
=
λ

k
.

Thus if k ≤ λ the ratio is greater or equal to 1, and it follows that pX(k) is monotonically
increasing. Otherwise, the ratio is less than one, and pX(k) is monotonically decreasing,
as required.

Solution to Problem 2.13. We will use the PMF for the number of girls among
the natural children together with the formula for the PMF of a function of a random
variable. Let N be the number of natural children that are girls. Then N has a binomial
PMF

pN (k) =


(

5

k

)
·
(

1

2

)5

, if 0 ≤ k ≤ 5,

0, otherwise.

Let G be the number of girls out of the 7 children, so that G = N + 2. By applying
the formula for the PMF of a function of a random variable, we have

pG(g) =
∑

{n |n+2=g}

pN (n) = pN (g − 2).

Thus

pG(g) =


(

5

g − 2

)
·
(

1

2

)5

, if 2 ≤ g ≤ 7,

0, otherwise.

Solution to Problem 2.14. (a) Using the formula pY (y) =
∑

{x | x mod(3)=y} pX(x),

we obtain
pY (0) = pX(0) + pX(3) + pX(6) + pX(9) = 4/10,

pY (1) = pX(1) + pX(4) + pX(7) = 3/10,

pY (2) = pX(2) + pX(5) + pX(8) = 3/10,

pY (y) = 0, if y 6∈ {0, 1, 2}.

(b) Similarly, using the formula pY (y) =
∑

{x | 5 mod(x+1)=y} pX(x), we obtain

pY (y) =


2/10, if y = 0,
2/10, if y = 1,
1/10, if y = 2,
5/10, if y = 5,
0, otherwise.
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Solution to Problem 2.15. The random variable Y takes the values k ln a, where
k = 1, . . . , n, if and only if X = ak or X = a−k. Furthermore, Y takes the value 0, if
and only if X = 1. Thus, we have

pY (y) =


2

2n+ 1
, if y = ln a, 2 ln a, . . . , k ln a,

1

2n+ 1
, if y = 0,

0, otherwise.

Solution to Problem 2.16. (a) The scalar a must satisfy

1 =
∑

x

pX(x) =
1

a

3∑
x=−3

x2,

so

a =

3∑
x=−3

x2 = (−3)2 + (−2)2 + (−1)2 + 12 + 22 + 32 = 28.

We also have E[X] = 0 because the PMF is symmetric around 0.

(b) If z ∈ {1, 4, 9}, then

pZ(z) = pX(
√
z) + pX(−

√
z) =

z

28
+

z

28
=

z

14
.

Otherwise pZ(z) = 0.

(c) var(X) = E[Z] =
∑

z

zpZ(z) =
∑

z∈{1,4,9}

z2

14
= 7.

(d) We have

var(X) =
∑

x

(x−E[X])2pX(x)

= 12 ·
(
pX(−1) + pX(1)

)
+ 22 ·

(
pX(−2) + pX(2)

)
+ 32 ·

(
pX(−3) + pX(3)

)
= 2 · 1

28
+ 8 · 4

28
+ 18 · 9

28

= 7.

Solution to Problem 2.17. If X is the temperature in Celsius, the temperature in
Fahrenheit is Y = 32 + 9X/5. Therefore,

E[Y ] = 32 + 9E[X]/5 = 32 + 18 = 50.

Also
var(Y ) = (9/5)2var(X),
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where var(X), the square of the given standard deviation of X, is equal to 100. Thus,
the standard deviation of Y is (9/5) · 10 = 18. Hence a normal day in Fahrenheit is
one for which the temperature is in the range [32, 68].

Solution to Problem 2.18. We have

pX(x) =

{
1/(b− a+ 1), if x = 2k, where a ≤ k ≤ b, k integer,

0, otherwise,

and

E[X] =

b∑
k=a

1

b− a+ 1
2k =

2a

b− a+ 1
(1 + 2 + · · ·+ 2b−a) =

2b+1 − 2a

b− a+ 1
.

Similarly,

E[X2] =

b∑
k=a

1

b− a+ 1
(2k)2 =

4b+1 − 4a

3(b− a+ 1)
,

and finally

var(X) =
4b+1 − 4a

3(b− a+ 1)
−
(

2b+1 − 2a

b− a+ 1

)2

.

Solution to Problem 2.19. We will find the expected gain for each strategy, by
computing the expected number of questions until we find the prize.

(a) With this strategy, the probability of finding the location of the prize with i ques-
tions, where i = 1, . . . , 8, is 1/10. The probability of finding the location with 9
questions is 2/10. Therefore, the expected number of questions is

2

10
· 9 +

1

10

8∑
i=1

i = 5.4.

(b) It can be checked that for 4 of the 10 possible box numbers, exactly 4 questions
will be needed, whereas for 6 of the 10 numbers, 3 questions will be needed. Therefore,
with this strategy, the expected number of questions is

4

10
· 4 +

6

10
· 3 = 3.4.

Solution to Problem 2.20. The number C of candy bars you need to eat is a
geometric random variable with parameter p. Thus the mean is E[C] = 1/p, and the
variance is var(C) = (1− p)/p2.

Solution to Problem 2.21. The expected value of the gain for a single game is
infinite since if X is your gain, then

E[X] =

∞∑
k=1

2k · 2−k =

∞∑
k=1

1 = ∞.
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Thus if you are faced with the choice of playing for given fee f or not playing at all,
and your objective is to make the choice that maximizes your expected net gain, you
would be willing to pay any value of f . However, this is in strong disagreement with the
behavior of individuals. In fact experiments have shown that most people are willing to
pay only about $20 to $30 to play the game. The discrepancy is due to a presumption
that the amount one is willing to pay is determined by the expected gain. However,
expected gain does not take into account a person’s attitude towards risk taking.

Solution to Problem 2.22. (a) Let X be the number of tosses until the game is
over. Noting that X is geometric with probability of success

P
(
{HT, TH}

)
= p(1− q) + q(1− p),

we obtain

pX(k) =
(
1− p(1− q)− q(1− p)

)k−1(
p(1− q) + q(1− p)

)
, k = 1, 2, . . .

Therefore

E[X] =
1

p(1− q) + q(1− p)

and

var(X) =
pq + (1− p)(1− q)(
p(1− q) + q(1− p)

)2 .
(b) The probability that the last toss of the first coin is a head is

P
(
HT | {HT, TH}

)
=

p(1− q)

p(1− q) + (1− q)p
.

Solution to Problem 2.23. Let X be the total number of tosses.

(a) For each toss after the first one, there is probability 1/2 that the result is the same
as in the preceding toss. Thus, the random variable X is of the form X = Y +1, where
Y is a geometric random variable with parameter p = 1/2. It follows that

pX(k) =

{
(1/2)k−1, if k ≥ 2,
0, otherwise,

and

E[X] = E[Y ] + 1 =
1

p
+ 1 = 3.

We also have

var(X) = var(Y ) =
1− p

p2
= 2.

(b) If k > 2, there are k − 1 sequences that lead to the event {X = k}. One such
sequence is H · · ·HT , where k−1 heads are followed by a tail. The other k−2 possible
sequences are of the form T · · ·TH · · ·HT , for various lengths of the initial T · · ·T
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segment. For the case where k = 2, there is only one (hence k − 1) possible sequence
that leads to the event {X = k}, namely the sequence HT . Therefore, for any k ≥ 2,

P(X = k) = (k − 1)(1/2)k.

It follows that

pX(k) =

{
(k − 1)(1/2)k, if k ≥ 2,
0, otherwise,

and

E[X] =

∞∑
k=2

k(k−1)(1/2)k =

∞∑
k=1

k(k−1)(1/2)k =

∞∑
k=1

k2(1/2)k−
∞∑

k=1

k(1/2)k = 6−2 = 4.

We have used here the equalities

∞∑
k=1

k(1/2)k = E[Y ] = 2,

and
∞∑

k=1

k2(1/2)k = E[Y 2] = var(Y ) +
(
E[Y ]

)2
= 2 + 22 = 6,

where Y is a geometric random variable with parameter p = 1/2.

Solution to Problem 2.24. (a) There are 21 integer pairs (x, y) in the region

R =
{
(x, y) | − 2 ≤ x ≤ 4, −1 ≤ y − x ≤ 1

}
,

so that the joint PMF of X and Y is

pX,Y (x, y) =
{

1/21, if (x, y) is in R,
0, otherwise.

For each x in the range [−2, 4], there are three possible values of Y . Thus, we
have

pX(x) =
{

3/21, if x = −2,−1, 0, 1, 2, 3, 4,
0, otherwise.

The mean of X is the midpoint of the range [−2, 4]:

E[X] = 1.

The marginal PMF of Y is obtained by using the tabular method. We have

pY (y) =


1/21, if y = −3,
2/21, if y = −2,
3/21, if y = −1, 0, 1, 2, 3,
2/21, if y = 4,
1/21, if y = 5,
0, otherwise.
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The mean of Y is

E[Y ] =
1

21
· (−3 + 5) +

2

21
· (−2 + 4) +

3

21
· (−1 + 1 + 2 + 3) = 1.

(b) The profit is given by

P = 100X + 200Y,

so that

E[P ] = 100 ·E[X] + 200 ·E[Y ] = 100 · 1 + 200 · 1 = 300.

Solution to Problem 2.25. (a) Since all possible values of (I, J) are equally likely,
we have

pI,J(i, j) =

{ 1∑n

k=1
mk

, if j ≤ mi,

0, otherwise.

The marginal PMFs are given by

pI(i) =

m∑
j=1

pI,J(i, j) =
mi∑n

k=1
mk

, i = 1, . . . , n,

pJ(j) =

n∑
i=1

pI,J(i, j) =
lj∑n

k=1
mk

, j = 1, . . . ,m,

where lj is the number of students that have answered question j, i.e., students i with
j ≤ mi.

(b) The expected value of the score of student i is the sum of the expected values
pija+ (1− pij)b of the scores on questions j with j = 1, . . . ,mi, i.e.,

mi∑
j=1

(
pija+ (1− pij)b

)
.

Solution to Problem 2.26. (a) The possible values of the random variable X are
the ten numbers 101, . . . , 110, and the PMF is given by

pX(k) =

{
P(X > k − 1)−P(X > k), if k = 101, . . . 110,

0, otherwise.

We have P(X > 100) = 1 and for k = 101, . . . 110,

P(X > k) = P(X1 > k,X2 > k,X3 > k)

= P(X1 > k)P(X2 > k)P(X3 > k)

=
(110− k)3

103
.
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It follows that

pX(k) =

{
(111− k)3 − (110− k)3

103
, if k = 101, . . . 110,

0, otherwise.

(An alternative solution is based on the notion of a CDF, which will be introduced in
Chapter 3.)

(b) Since Xi is uniformly distributed over the integers in the range [101, 110], we have
E[Xi] = (101 + 110)/2 = 105.5. The expected value of X is

E[X] =

∞∑
k=−∞

k · pX(k) =

110∑
k=101

k · px(k) =

110∑
k=101

k · (111− k)3 − (110− k)3

103
.

The above expression can be evaluated to be equal to 103.025. The expected improve-
ment is therefore 105.5 - 103.025 = 2.475.

Solution to Problem 2.31. The marginal PMF pY is given by the binomial formula

pY (y) =

(
4

y

)(
1

6

)y (5

6

)4−y

, y = 0, 1, . . . , 4.

To compute the conditional PMF pX|Y , note that given that Y = y, X is the number
of 1’s in the remaining 4− y rolls, each of which can take the 5 values 1, 3, 4, 5, 6 with
equal probability 1/5. Thus, the conditional PMF pX|Y is binomial with parameters
4− y and p = 1/5:

pX|Y (x | y) =

(
4− y

x

)(
1

5

)x (4

5

)4−y−x

,

for all nonnegative integers x and y such that 0 ≤ x + y ≤ 4. The joint PMF is now
given by

pX,Y (x, y) = pY (y)pX|Y (x | y)

=

(
4

y

)(
1

6

)y (5

6

)4−y
(

4− y

x

)(
1

5

)x (4

5

)4−y−x

,

for all nonnegative integers x and y such that 0 ≤ x+ y ≤ 4. For other values of x and
y, we have pX,Y (x, y) = 0.

Solution to Problem 2.32. Let Xi be the random variable taking the value 1 or 0
depending on whether the first partner of the ith couple has survived or not. Let Yi

be the corresponding random variable for the second partner of the ith couple. Then,
we have S =

∑m

i=1
XiYi, and by using the total expectation theorem,

E[S |A = a] =

m∑
i=1

E[XiYi |A = a]

= mE[X1Y1 |A = a]

= mE[Y1 = 1 |X1 = 1, A = a]P(X1 = 1 |A = a)

= mP(Y1 = 1 |X1 = 1, A = a)P(X1 = 1 |A = a).
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We have

P(Y1 = 1 |X1 = 1, A = a) =
a− 1

2m− 1
, P(X1 = 1 |A = a) =

a

2m
.

Thus

E[S |A = a] = m
a− 1

2m− 1
· a

2m
=

a(a− 1)

2(2m− 1)
.

Note that E[S |A = a] does not depend on p.

Solution to Problem 2.38. (a) Let X be the number of red lights that Alice
encounters. The PMF of X is binomial with n = 4 and p = 1/2. The mean and the
variance of X are E[X] = np = 2 and var(X) = np(1− p) = 4 · (1/2) · (1/2) = 1.

(b) The variance of Alice’s commuting time is the same as the variance of the time by
which Alice is delayed by the red lights. This is equal to the variance of 2X, which is
4var(X) = 4.

Solution to Problem 2.39. Let Xi be the number of eggs Harry eats on day i.
Then, the Xi are independent random variables, uniformly distributed over the set
{1, . . . , 6}. We have X =

∑10

i=1
Xi, and

E[X] = E

(
10∑

i=1

Xi

)
=

10∑
i=1

E[Xi] = 35.

Similarly, we have

var(X) = var

(
10∑

i=1

Xi

)
=

10∑
i=1

var(Xi),

since the Xi are independent. Using the formula of Example 2.6, we have

var(Xi) =
(6− 1)(6− 1 + 2)

12
≈ 2.9167,

so that var(X) ≈ 29.167.

Solution to Problem 2.40. Associate a success with a paper that receives a grade
that has not been received before. Let Xi be the number of papers between the ith
success and the (i+ 1)st success. Then we have X = 1 +

∑5

i=1
Xi and hence

E[X] = 1 +

5∑
i=1

E[Xi].

After receiving i−1 different grades so far (i−1 successes), each subsequent paper has
probability (6− i)/6 of receiving a grade that has not been received before. Therefore,
the random variable Xi is geometric with parameter pi = (6−i)/6, so E[Xi] = 6/(6−i).
It follows that

E[X] = 1 +

5∑
i=1

6

6− i
= 1 + 6

5∑
i=1

1

i
= 14.7.
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Solution to Problem 2.41. (a) The PMF ofX is the binomial PMF with parameters
p = 0.02 and n = 250. The mean is E[X] = np = 250·0.02 = 5. The desired probability
is

P(X = 5) =

(
250

5

)
(0.02)5(0.98)245 = 0.1773.

(b) The Poisson approximation has parameter λ = np = 5, so the probability in (a) is
approximated by

e−λ λ
5

5!
= 0.1755.

(c) Let Y be the amount of money you pay in traffic tickets during the year. Then

E[Y ] =

5∑
i=1

50 ·E[Yi],

where Yi is the amount of money you pay on the ith day. The PMF of Yi is

P(Yi = y) =


0.98, if y = 0,
0.01, if y = 10,
0.006, if y = 20,
0.004, if y = 50.

The mean is
E[Yi] = 0.01 · 10 + 0.006 · 20 + 0.004 · 50 = 0.42.

The variance is

var(Yi) = E[Y 2
i ]−

(
E[Yi]

)2
= 0.01 · (10)2 +0.006 · (20)2 +0.004 · (50)2− (0.42)2 = 13.22.

The mean of Y is
E[Y ] = 250 ·E[Yi] = 105,

and using the independence of the random variables Yi, the variance of Y is

var(Y ) = 250 · var(Yi) = 3, 305.

(d) The variance of the sample mean is

p(1− p)

250

so assuming that |p − p̂| is within 5 times the standard deviation, the possible values
of p are those that satisfy p ∈ [0, 1] and

(p− 0.02)2 ≤ 25p(1− p)

250
.
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This is a quadratic inequality that can be solved for the interval of values of p. After
some calculation, the inequality can be written as 275p2 − 35p+ 0.1 ≤ 0, which holds
if and only if p ∈ [0.0025, 0.1245].

Solution to Problem 2.42. (a) Noting that

P(Xi = 1) =
Area(S)

Area
(
[0, 1]× [0, 1]

) = Area(S),

we obtain

E[Sn] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] = E[Xi] = Area(S),

and

var(Sn) = var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

var(Xi) =
1

n
var(Xi) =

1

n

(
1−Area(S)

)
Area(S),

which tends to zero as n tends to infinity.

(b) We have

Sn =
n− 1

n
Sn−1 +

1

n
Xn.

(c) We can generate S10000 (up to a certain precision) as follows :

1. Initialize S to zero.

2. For i = 1 to 10000

3. Randomly select two real numbers a and b (up to a certain precision)

independently and uniformly from the interval [0, 1].

4. If (a− 0.5)2 + (b− 0.5)2 < 0.25, set x to 1 else set x to 0.

5. Set S := (i− 1)S/i+ x/i .

6. Return S.

By running the above algorithm, a value of S10000 equal to 0.7783 was obtained (the
exact number depends on the random number generator). We know from part (a) that
the variance of Sn tends to zero as n tends to infinity, so the obtained value of S10000

is an approximation of E[S10000]. But E[S10000] = Area(S) = π/4, this leads us to the
following approximation of π:

4 · 0.7783 = 3.1132.

(d) We only need to modify the test done at step 4. We have to test whether or not
0 ≤ cosπa+ sinπb ≤ 1. The obtained approximation of the area was 0.3755.
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