## CHAPTER 3

Solution to Problem 3.1. The random variable $Y=g(X)$ is discrete and its PMF is given by

$$
p_{Y}(1)=\mathbf{P}(X \leq 1 / 3)=1 / 3, \quad p_{Y}(2)=1-p_{Y}(1)=2 / 3 .
$$

Thus,

$$
\mathbf{E}[Y]=\frac{1}{3} \cdot 1+\frac{2}{3} \cdot 2=\frac{5}{3}
$$

The same result is obtained using the expected value rule:

$$
\mathbf{E}[Y]=\int_{0}^{1} g(x) f_{X}(x) d x=\int_{0}^{1 / 3} d x+\int_{1 / 3}^{1} 2 d x=\frac{5}{3}
$$

Solution to Problem 3.2. We have

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{-\infty}^{\infty} \frac{\lambda}{2} e^{-\lambda|x|} d x=2 \cdot \frac{1}{2} \int_{0}^{\infty} \lambda e^{-\lambda x} d x=2 \cdot \frac{1}{2}=1
$$

where we have used the fact $\int_{0}^{\infty} \lambda e^{-\lambda x} d x=1$, i.e., the normalization property of the exponential PDF. By symmetry of the PDF, we have $\mathbf{E}[X]=0$. We also have

$$
\mathbf{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \frac{\lambda}{2} e^{-\lambda|x|} d x=\int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} d x=\frac{2}{\lambda^{2}},
$$

where we have used the fact that the second moment of the exponential PDF is $2 / \lambda^{2}$. Thus

$$
\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=2 / \lambda^{2}
$$

Solution to Problem 3.5. Let $A=b h / 2$ be the area of the given triangle, where $b$ is the length of the base, and $h$ is the height of the triangle. From the randomly chosen point, draw a line parallel to the base, and let $A_{x}$ be the area of the triangle thus formed. The height of this triangle is $h-x$ and its base has length $b(h-x) / h$. Thus $A_{x}=b(h-x)^{2} /(2 h)$. For $x \in[0, h]$, we have

$$
F_{X}(x)=1-\mathbf{P}(X>x)=1-\frac{A_{x}}{A}=1-\frac{b(h-x)^{2} /(2 h)}{b h / 2}=1-\left(\frac{h-x}{h}\right)^{2}
$$

while $F_{X}(x)=0$ for $x<0$ and $F_{X}(x)=1$ for $x>h$.
The PDF is obtained by differentiating the CDF. We have

$$
f_{X}(x)=\frac{d F_{X}}{d x}(x)= \begin{cases}\frac{2(h-x)}{h^{2}}, & \text { if } 0 \leq x \leq h \\ 0, & \text { otherwise }\end{cases}
$$

Solution to Problem 3.6. Let $X$ be the waiting time and $Y$ be the number of customers found. For $x<0$, we have $F_{X}(x)=0$, while for $x \geq 0$,

$$
F_{X}(x)=\mathbf{P}(X \leq x)=\frac{1}{2} \mathbf{P}(X \leq x \mid Y=0)+\frac{1}{2} \mathbf{P}(X \leq x \mid Y=1)
$$

Since

$$
\begin{gathered}
\mathbf{P}(X \leq x \mid Y=0)=1 \\
\mathbf{P}(X \leq x \mid Y=1)=1-e^{-\lambda x}
\end{gathered}
$$

we obtain

$$
F_{X}(x)= \begin{cases}\frac{1}{2}\left(2-e^{-\lambda x}\right), & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Note that the CDF has a discontinuity at $x=0$. The random variable $X$ is neither discrete nor continuous.
Solution to Problem 3.7. (a) We first calculate the CDF of $X$. For $x \in[0, r]$, we have

$$
F_{X}(x)=\mathbf{P}(X \leq x)=\frac{\pi x^{2}}{\pi r^{2}}=\left(\frac{x}{r}\right)^{2} .
$$

For $x<0$, we have $F_{X}(x)=0$, and for $x>r$, we have $F_{X}(x)=1$. By differentiating, we obtain the PDF

$$
f_{X}(x)= \begin{cases}\frac{2 x}{r^{2}}, & \text { if } 0 \leq x \leq r \\ 0, & \text { otherwise }\end{cases}
$$

We have

$$
\mathbf{E}[X]=\int_{0}^{r} \frac{2 x^{2}}{r^{2}} d x=\frac{2 r}{3}
$$

Also

$$
\mathbf{E}\left[X^{2}\right]=\int_{0}^{r} \frac{2 x^{3}}{r^{2}} d x=\frac{r^{2}}{2}
$$

SO

$$
\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\frac{r^{2}}{2}-\frac{4 r^{2}}{9}=\frac{r^{2}}{18}
$$

(b) Alvin gets a positive score in the range $[1 / t, \infty)$ if and only if $X \leq t$, and otherwise he gets a score of 0 . Thus, for $s<0$, the CDF of $S$ is $F_{S}(s)=0$. For $0 \leq s<1 / t$, we have
$F_{S}(s)=\mathbf{P}(S \leq s)=\mathbf{P}($ Alvin's hit is outside the inner circle $)=1-\mathbf{P}(X \leq t)=1-\frac{t^{2}}{r^{2}}$.
For $1 / t<s$, the CDF of $S$ is given by

$$
F_{S}(s)=\mathbf{P}(S \leq s)=\mathbf{P}(X \leq t) \mathbf{P}(S \leq s \mid X \leq t)+\mathbf{P}(X>t) \mathbf{P}(S \leq s \mid X>t)
$$

We have

$$
\mathbf{P}(X \leq t)=\frac{t^{2}}{r^{2}}, \quad \mathbf{P}(X>t)=1-\frac{t^{2}}{r^{2}}
$$

and since $S=0$ when $X>t$,

$$
\mathbf{P}(S \leq s \mid X>t)=1
$$

Furthermore,

$$
\mathbf{P}(S \leq s \mid X \leq t)=\mathbf{P}(1 / X \leq s \mid X \leq t)=\frac{\mathbf{P}(1 / s \leq X \leq t)}{\mathbf{P}(X \leq t)}=\frac{\frac{\pi t^{2}-\pi(1 / s)^{2}}{\pi r^{2}}}{\frac{\pi t^{2}}{\pi r^{2}}}=1-\frac{1}{s^{2} t^{2}}
$$

Combining the above equations, we obtain

$$
\mathbf{P}(S \leq s)=\frac{t^{2}}{r^{2}}\left(1-\frac{1}{s^{2} t^{2}}\right)+1-\frac{t^{2}}{r^{2}}=1-\frac{1}{s^{2} r^{2}}
$$

Collecting the results of the preceding calculations, the CDF of $S$ is

$$
F_{S}(s)= \begin{cases}0, & \text { if } s<0 \\ 1-\frac{t^{2}}{r^{2}}, & \text { if } 0 \leq s<1 / t \\ 1-\frac{1}{s^{2} r^{2}}, & \text { if } 1 / t \leq s\end{cases}
$$

Because $F_{S}$ has a discontinuity at $s=0$, the random variable $S$ is not continuous.
Solution to Problem 3.8. (a) By the total probability theorem, we have

$$
F_{X}(x)=\mathbf{P}(X \leq x)=p \mathbf{P}(Y \leq x)+(1-p) \mathbf{P}(Z \leq x)=p F_{Y}(x)+(1-p) F_{Z}(x)
$$

By differentiating, we obtain

$$
f_{X}(x)=p f_{Y}(x)+(1-p) f_{Z}(x)
$$

(b) Consider the random variable $Y$ that has PDF

$$
f_{Y}(y)= \begin{cases}\lambda e^{\lambda y}, & \text { if } y<0 \\ 0, & \text { otherwise }\end{cases}
$$

and the random variable $Z$ that has PDF

$$
f_{Z}(z)= \begin{cases}\lambda e^{-\lambda z}, & \text { if } y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

We note that the random variables $-Y$ and $Z$ are exponential. Using the CDF of the exponential random variable, we see that the CDFs of $Y$ and $Z$ are given by

$$
F_{Y}(y)= \begin{cases}e^{\lambda y}, & \text { if } y<0 \\ 1, & \text { if } y \geq 0\end{cases}
$$

$$
F_{Z}(z)= \begin{cases}0, & \text { if } z<0 \\ 1-e^{-\lambda z}, & \text { if } z \geq 0\end{cases}
$$

We have $f_{X}(x)=p f_{Y}(x)+(1-p) f_{Z}(x)$, and consequently $F_{X}(x)=p F_{Y}(x)+(1-$ $p) F_{Z}(x)$. It follows that

$$
\begin{aligned}
F_{X}(x) & = \begin{cases}p e^{\lambda x}, & \text { if } x<0, \\
p+(1-p)\left(1-e^{-\lambda x}\right), & \text { if } x \geq 0,\end{cases} \\
& = \begin{cases}p e^{\lambda x}, & \text { if } x<0, \\
1-(1-p) e^{-\lambda x}, & \text { if } x \geq 0\end{cases}
\end{aligned}
$$

Solution to Problem 3.11. (a) $X$ is a standard normal, so by using the normal table, we have $\mathbf{P}(X \leq 1.5)=\Phi(1.5)=0.9332$. Also $\mathbf{P}(X \leq-1)=1-\Phi(1)=$ $1-0.8413=0.1587$.
(b) The random variable $(Y-1) / 2$ is obtained by subtracting from $Y$ its mean (which is 1 ) and dividing by the standard deviation (which is 2 ), so the PDF of $(Y-1) / 2$ is the standard normal.
(c) We have, using the normal table,

$$
\begin{aligned}
\mathbf{P}(-1 \leq Y \leq 1) & =\mathbf{P}(-1 \leq(Y-1) / 2 \leq 0) \\
& =\mathbf{P}(-1 \leq Z \leq 0) \\
& =\mathbf{P}(0 \leq Z \leq 1) \\
& =\Phi(1)-\Phi(0) \\
& =0.8413-0.5 \\
& =0.3413
\end{aligned}
$$

where $Z$ is a standard normal random variable.
Solution to Problem 3.12. The random variable $Z=X / \sigma$ is a standard normal, so

$$
\mathbf{P}(X \geq k \sigma)=\mathbf{P}(Z \geq k)=1-\Phi(k)
$$

From the normal tables we have

$$
\Phi(1)=0.8413, \quad \Phi(2)=0.9772, \quad \Phi(3)=0.9986
$$

Thus $\mathbf{P}(X \geq \sigma)=0.1587, \mathbf{P}(X \geq 2 \sigma)=0.0228, \mathbf{P}(X \geq 3 \sigma)=0.0014$.
We also have

$$
\mathbf{P}(|X| \leq k \sigma)=\mathbf{P}(|Z| \leq k)=\Phi(k)-\mathbf{P}(Z \leq-k)=\Phi(k)-(1-\Phi(k))=2 \Phi(k)-1
$$

Using the normal table values above, we obtain

$$
\mathbf{P}(|X| \leq \sigma)=0.6826, \quad \mathbf{P}(|X| \leq 2 \sigma)=0.9544, \quad \mathbf{P}(|X| \leq 3 \sigma)=0.9972
$$

where $t$ is a standard normal random variable.

Solution to Problem 3.13. Let $X$ and $Y$ be the temperature in Celsius and Fahrenheit, respectively, which are related by $X=5(Y-32) / 9$. Therefore, 59 degrees Fahrenheit correspond to 15 degrees Celsius. So, if $Z$ is a standard normal random variable, we have using $\mathbf{E}[X]=\sigma_{X}=10$,

$$
\mathbf{P}(Y \leq 59)=\mathbf{P}(X \leq 15)=\mathbf{P}\left(Z \leq \frac{15-\mathbf{E}[X]}{\sigma_{X}}\right)=\mathbf{P}(Z \leq 0.5)=\Phi(0.5)
$$

From the normal tables we have $\Phi(0.5)=0.6915$, so $\mathbf{P}(Y \leq 59)=0.6915$.
Solution to Problem 3.15. (a) Since the area of the semicircle is $\pi r^{2} / 2$, the joint PDF of $X$ and $Y$ is $f_{X, Y}(x, y)=2 / \pi r^{2}$, for $(x, y)$ in the semicircle, and $f_{X, Y}(x, y)=0$, otherwise.
(b) To find the marginal PDF of $Y$, we integrate the joint PDF over the range of $X$. For any possible value $y$ of $Y$, the range of possible values of $X$ is the interval $\left[-\sqrt{r^{2}-y^{2}}, \sqrt{r^{2}-y^{2}}\right]$, and we have

$$
f_{Y}(y)=\int_{-\sqrt{r^{2}-y^{2}}}^{\sqrt{r^{2}-y^{2}}} \frac{2}{\pi r^{2}} d x= \begin{cases}\frac{4 \sqrt{r^{2}-y^{2}}}{\pi r^{2}}, & \text { if } 0 \leq y \leq r \\ 0, & \text { otherwise }\end{cases}
$$

Thus,

$$
\mathbf{E}[Y]=\frac{4}{\pi r^{2}} \int_{0}^{r} y \sqrt{r^{2}-y^{2}} d y=\frac{4 r}{3 \pi},
$$

where the integration is performed using the substitution $z=r^{2}-y^{2}$.
(c) There is no need to find the marginal PDF $f_{Y}$ in order to find $\mathbf{E}[Y]$. Let $D$ denote the semicircle. We have, using polar coordinates

$$
\mathbf{E}[Y]=\int_{(x, y) \in D} \int_{X, Y} y f_{X, Y}(x, y) d x d y=\int_{0}^{\pi} \int_{0}^{r} \frac{2}{\pi r^{2}} s(\sin \theta) s d s d \theta=\frac{4 r}{3 \pi}
$$

Solution to Problem 3.16. Let $A$ be the event that the needle will cross a horizontal line, and let $B$ be the probability that it will cross a vertical line. From the analysis of Example 3.11, we have that

$$
\mathbf{P}(A)=\frac{2 l}{\pi a}, \quad \mathbf{P}(B)=\frac{2 l}{\pi b}
$$

Since at most one horizontal (or vertical) line can be crossed, the expected number of horizontal lines crossed is $\mathbf{P}(A)$ [or $\mathbf{P}(B)$, respectively]. Thus the expected number of crossed lines is

$$
\mathbf{P}(A)+\mathbf{P}(B)=\frac{2 l}{\pi a}+\frac{2 l}{\pi b}=\frac{2 l(a+b)}{\pi a b}
$$

The probability that at least one line will be crossed is

$$
\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B)
$$

Let $X$ (or $Y$ ) be the distance from the needle's center to the nearest horizontal (or vertical) line. Let $\Theta$ be the angle formed by the needle's axis and the horizontal lines as in Example 3.11. We have

$$
\mathbf{P}(A \cap B)=\mathbf{P}\left(X \leq \frac{l \sin \Theta}{2}, Y \leq \frac{l \cos \Theta}{2}\right)
$$

We model the triple $(X, Y, \Theta)$ as uniformly distributed over the set of all $(x, y, \theta)$ that satisfy $0 \leq x \leq a / 2,0 \leq y \leq b / 2$, and $0 \leq \theta \leq \pi / 2$. Hence, within this set, we have

$$
f_{X, Y, \Theta}(x, y, \theta)=\frac{8}{\pi a b} .
$$

The probability $\mathbf{P}(A \cap B)$ is

$$
\begin{aligned}
\mathbf{P}(X \leq(l / 2) \sin \Theta, Y \leq(l / 2) \cos \Theta) & =\int_{\substack{x \leq(l / 2) \sin \theta \\
y \leq l / 2) \cos \theta}} f_{X, Y, \Theta}(x, y, \theta) d x d y d \theta \\
& =\frac{8}{\pi a b} \int_{0}^{\pi / 2} \int_{0}^{(l / 2) \cos \theta} \int_{0}^{(l / 2) \sin \theta} d x d y d \theta \\
& =\frac{2 l^{2}}{\pi a b} \int_{0}^{\pi / 2} \cos \theta \sin \theta d \theta \\
& =\frac{l^{2}}{\pi a b} .
\end{aligned}
$$

Thus we have

$$
\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B)=\frac{2 l}{\pi a}+\frac{2 l}{\pi b}-\frac{l^{2}}{\pi a b}=\frac{l}{\pi a b}(2(a+b)-l)
$$

Solution to Problem 3.18. (a) We have

$$
\begin{gathered}
\mathbf{E}[X]=\int_{1}^{3} \frac{x^{2}}{4} d x=\left.\frac{x^{3}}{12}\right|_{1} ^{3}=\frac{27}{12}-\frac{1}{12}=\frac{26}{12}=\frac{13}{6}, \\
\mathbf{P}(A)=\int_{2}^{3} \frac{x}{4} d x=\left.\frac{x^{2}}{8}\right|_{2} ^{3}=\frac{9}{8}-\frac{4}{8}=\frac{5}{8} .
\end{gathered}
$$

We also have

$$
\begin{aligned}
f_{X \mid A}(x) & = \begin{cases}\frac{f_{X}(x)}{\mathbf{P}(A)}, & \text { if } x \in A \\
0, & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{2 x}{5}, & \text { if } 2 \leq x \leq 3 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

from which we obtain

$$
\mathbf{E}[X \mid A]=\int_{2}^{3} x \cdot \frac{2 x}{5} d x=\left.\frac{2 x^{3}}{15}\right|_{2} ^{3}=\frac{54}{15}-\frac{16}{15}=\frac{38}{15}
$$

(b) We have

$$
\mathbf{E}[Y]=\mathbf{E}\left[X^{2}\right]=\int_{1}^{3} \frac{x^{3}}{4} d x=5
$$

and

$$
\mathbf{E}\left[Y^{2}\right]=\mathbf{E}\left[X^{4}\right]=\int_{1}^{3} \frac{x^{5}}{4} d x=\frac{91}{3}
$$

Thus,

$$
\operatorname{var}(Y)=\mathbf{E}\left[Y^{2}\right]-(\mathbf{E}[Y])^{2}=\frac{91}{3}-5^{2}=\frac{16}{3} .
$$

Solution to Problem 3.19. (a) We have, using the normalization property,

$$
\int_{1}^{2} c x^{-2} d x=1
$$

or

$$
c=\frac{1}{\int_{1}^{2} x^{-2} d x}=2
$$

(b) We have

$$
\mathbf{P}(A)=\int_{1.5}^{2} 2 x^{-2} d x=\frac{1}{3}
$$

and

$$
f_{X \mid A}(x \mid A)= \begin{cases}6 x^{-2}, & \text { if } 1.5<x \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(c) We have

$$
\begin{gathered}
\mathbf{E}[Y \mid A]=\mathbf{E}\left[X^{2} \mid A\right]=\int_{1.5}^{2} 6 x^{-2} x^{2} d x=3 \\
\mathbf{E}\left[Y^{2} \mid A\right]=\mathbf{E}\left[X^{4} \mid A\right]=\int_{1.5}^{2} 6 x^{-2} x^{4} d x=\frac{37}{4}
\end{gathered}
$$

and

$$
\operatorname{var}(Y \mid A)=\frac{37}{4}-3^{2}=\frac{1}{4}
$$

Solution to Problem 3.20. The expected value in question is

$$
\begin{aligned}
\mathbf{E}[\text { Time }]= & (5+\mathbf{E}[\text { stay of } 2 \text { nd student }]) \cdot \mathbf{P}(1 \text { st stays no more than } 5 \text { minutes }) \\
& +(\mathbf{E}[\text { stay of } 1 \text { st } \mid \text { stay of } 1 \text { st } \geq 5]+\mathbf{E}[\text { stay of } 2 \text { nd }]) \\
& \cdot \mathbf{P}(1 \text { st stays more than } 5 \text { minutes })
\end{aligned}
$$

We have $\mathbf{E}[$ stay of 2 nd student $]=30$, and, using the memorylessness property of the exponential distribution,

$$
\mathbf{E}[\text { stay of } 1 \text { st } \mid \text { stay of } 1 \text { st } \geq 5]=5+\mathbf{E}[\text { stay of } 1 \text { st }]=35 .
$$

Also

$$
\begin{aligned}
\mathbf{P}(1 \text { st student stays no more than } 5 \text { minutes }) & =1-e^{-5 / 30}, \\
\mathbf{P}(1 \text { st student stays more than } 5 \text { minutes }) & =e^{-5 / 30} .
\end{aligned}
$$

By substitution we obtain

$$
\mathbf{E}[\text { Time }]=(5+30) \cdot\left(1-e^{-5 / 30}\right)+(35+30) \cdot e^{-5 / 30}=35+30 \cdot e^{-5 / 30}=60.394 .
$$

Solution to Problem 3.21. (a) We have $f_{Y}(y)=1 / l$, for $0 \leq y \leq l$. Furthermore, given the value $y$ of $Y$, the random variable $X$ is uniform in the interval $[0, y]$. Therefore, $f_{X \mid Y}(x \mid y)=1 / y$, for $0 \leq x \leq y$. We conclude that

$$
f_{X, Y}(x, y)=f_{Y}(y) f_{X \mid Y}(x \mid y)= \begin{cases}\frac{1}{l} \cdot \frac{1}{y}, & 0 \leq x \leq y \leq l \\ 0, & \text { otherwise }\end{cases}
$$

(b) We have

$$
f_{X}(x)=\int f_{X, Y}(x, y) d y=\int_{x}^{l} \frac{1}{l y} d y=\frac{1}{l} \ln (l / x), \quad 0 \leq x \leq l .
$$

(c) We have

$$
\mathbf{E}[X]=\int_{0}^{l} x f_{X}(x) d x=\int_{0}^{l} \frac{x}{l} \ln (l / x) d x=\frac{l}{4} .
$$

(d) The fraction $Y / l$ of the stick that is left after the first break, and the further fraction $X / Y$ of the stick that is left after the second break are independent. Furthermore, the random variables $Y$ and $X / Y$ are uniformly distributed over the sets $[0, l]$ and $[0,1]$, respectively, so that $\mathbf{E}[Y]=l / 2$ and $\mathbf{E}[X / Y]=1 / 2$. Thus,

$$
\mathbf{E}[X]=\mathbf{E}[Y] \mathbf{E}\left[\frac{X}{Y}\right]=\frac{l}{2} \cdot \frac{1}{2}=\frac{l}{4} .
$$

Solution to Problem 3.22. Define coordinates such that the stick extends from position 0 (the left end) to position 1 (the right end). Denote the position of the first break by $X$ and the position of the second break by $Y$. With method (ii), we have $X<Y$. With methods (i) and (iii), we assume that $X<Y$ and we later account for the case $Y<X$ by using symmetry.

Under the assumption $X<Y$, the three pieces have lengths $X, Y-X$, and $1-Y$. In order that they form a triangle, the sum of the lengths of any two pieces must exceed the length of the third piece. Thus they form a triangle if

$$
X<(Y-X)+(1-Y), \quad(Y-X)<X+(1-Y), \quad(1-Y)<X+(Y-X) .
$$



Figure 3.1: (a) The joint PDF. (b) The conditional density of $X$.

These conditions simplify to

$$
X<0.5, \quad Y>0.5, \quad Y-X<0.5 .
$$

Consider first method (i). For $X$ and $Y$ to satisfy these conditions, the pair $(X, Y)$ must lie within the triangle with vertices $(0,0.5),(0.5,0.5)$, and $(0.5,1)$. This triangle has area $1 / 8$. Thus the probability of the event that the three pieces form a triangle and $X<Y$ is $1 / 8$. By symmetry, the probability of the event that the three pieces form a triangle and $X>Y$ is $1 / 8$. Since there two events are disjoint and form a partition of the event that the three pieces form a triangle, the desired probability is $1 / 8+1 / 8=1 / 4$.

Consider next method (ii). Since $X$ is uniformly distributed on $[0,1]$ and $Y$ is uniformly distributed on $[X, 1]$, we have for $0 \leq x \leq y \leq 1$,

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)=1 \cdot \frac{1}{1-x}
$$

The desired probability is the probability of the triangle with vertices $(0,0.5),(0.5,0.5)$, and ( $0.5,1$ ):

$$
\int_{0}^{1 / 2} \int_{1 / 2}^{x+1 / 2} f_{X, Y}(x, y) d y d x=\int_{0}^{1 / 2} \int_{1 / 2}^{x+1 / 2} \frac{1}{1-x} d y d x=\int_{0}^{1 / 2} \frac{x}{1-x} d y d x=-\frac{1}{2}+\ln 2
$$

Consider finally method (iii). Consider first the case $X<0.5$. Then the larger piece after the first break is the piece on the right. Thus, as in method (ii), $Y$ is uniformly distributed on $[X, 1]$ and the integral above gives the probability of a triangle being formed and $X<0.5$. Considering also the case $X>0.5$ doubles the probability, giving a final answer of $-1+2 \ln 2$.
Solution to Problem 3.23. (a) The area of the triangle is $1 / 2$, so that $f_{X, Y}(x, y)=$ $1 / 2$, on the triangle indicated in Fig. 3.1(a), and zero everywhere else.
(b) We have

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{0}^{1-y} 2 d x=2(1-y), \quad 0 \leq y \leq 1
$$

(c) We have

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{1}{1-y}, \quad 0 \leq x \leq 1-y
$$

The conditional density is shown in the figure.
Intuitively, since the joint PDF is constant, the conditional PDF (which is a "slice" of the joint, at some fixed $y$ ) is also constant. Therefore, the conditional PDF must be a uniform distribution. Given that $Y=y, X$ ranges from 0 to $1-y$. Therefore, for the PDF to integrate to 1 , its height must be equal to $1 /(1-y)$, in agreement with the figure.
(d) For $y>1$ or $y<0$, the conditional PDF is undefined, since these values of $y$ are impossible. For $0 \leq y<1$, the conditional mean $\mathbf{E}[X \mid Y=y]$ is obtained using the uniform PDF in Fig. 3.1(b), and we have

$$
\mathbf{E}[X \mid Y=y]=\frac{1-y}{2}, \quad 0 \leq y<1
$$

For $y=1, X$ must be equal to 0 , with certainty, so $\mathbf{E}[X \mid Y=1]=0$. Thus, the above formula is also valid when $y=1$. The conditional expectation is undefined when $y$ is outside $[0,1]$.

The total expectation theorem yields

$$
\mathbf{E}[X]=\int_{0}^{1} \frac{1-y}{2} f_{Y}(y) d y=\frac{1}{2}-\frac{1}{2} \int_{0}^{1} y f_{Y}(y) d y=\frac{1-\mathbf{E}[Y]}{2}
$$

(e) Because of symmetry, we must have $\mathbf{E}[X]=\mathbf{E}[Y]$. Therefore, $\mathbf{E}[X]=(1-\mathbf{E}[X]) / 2$, which yields $\mathbf{E}[X]=1 / 3$.
Solution to Problem 3.24. The conditional density of $X$ given that $Y=y$ is uniform over the interval $[0,(2-y) / 2]$, and we have

$$
\mathbf{E}[X \mid Y=y]=\frac{2-y}{4}, \quad 0 \leq y \leq 2
$$

Therefore, using the total expectation theorem,

$$
\mathbf{E}[X]=\int_{0}^{2} \frac{2-y}{4} f_{Y}(y) d y=\frac{2}{4}-\frac{1}{4} \int_{0}^{2} y f_{Y}(y) d y=\frac{2-\mathbf{E}[Y]}{4}
$$

Similarly, the conditional density of $Y$ given that $X=x$ is uniform over the interval $[0,2(1-x)]$, and we have

$$
\mathbf{E}[Y \mid X=x]=1-x, \quad 0 \leq x \leq 1
$$

Therefore,

$$
\mathbf{E}[Y]=\int_{0}^{1}(1-x) f_{X}(x) d x=1-\mathbf{E}[X] .
$$

By solving the two equations above for $\mathbf{E}[X]$ and $\mathbf{E}[Y]$, we obtain

$$
\mathbf{E}[X]=\frac{1}{3}, \quad \mathbf{E}[Y]=\frac{2}{3}
$$

Solution to Problem 3.25. Let $C$ denote the event that $X^{2}+Y^{2} \geq c^{2}$. The probability $\mathbf{P}(C)$ can be calculated using polar coordinates, as follows:

$$
\begin{aligned}
\mathbf{P}(C) & =\frac{1}{2 \pi \sigma^{2}} \int_{0}^{2 \pi} \int_{c}^{\infty} r e^{-r^{2} / 2 \sigma^{2}} d r d \theta \\
& =\frac{1}{\sigma^{2}} \int_{c}^{\infty} r e^{-r^{2} / 2 \sigma^{2}} d r \\
& =e^{-c^{2} / 2 \sigma^{2}}
\end{aligned}
$$

Thus, for $(x, y) \in C$,

$$
f_{X, Y \mid C}(x, y)=\frac{f_{X, Y}(x, y)}{\mathbf{P}(C)}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{1}{2 \sigma^{2}}\left(x^{2}+y^{2}-c^{2}\right)} .
$$

Solution to Problem 3.34. (a) Let $A$ be the event that the first coin toss resulted in heads. To calculate the probability $\mathbf{P}(A)$, we use the continuous version of the total probability theorem:

$$
\mathbf{P}(A)=\int_{0}^{1} \mathbf{P}(A \mid P=p) f_{P}(p) d p=\int_{0}^{1} p^{2} e^{p} d p
$$

which after some calculation yields

$$
\mathbf{P}(A)=e-2
$$

(b) Using Bayes' rule,

$$
\begin{aligned}
f_{P \mid A}(p) & =\frac{\mathbf{P}(A \mid P=p) f_{P}(p)}{\mathbf{P}(A)} \\
& = \begin{cases}\frac{p^{2} e^{p}}{e-2}, & 0 \leq p \leq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

(c) Let $B$ be the event that the second toss resulted in heads. We have

$$
\begin{aligned}
\mathbf{P}(B \mid A) & =\int_{0}^{1} \mathbf{P}(B \mid P=p, A) f_{P \mid A}(p) d p \\
& =\int_{0}^{1} \mathbf{P}(B \mid P=p) f_{P \mid A}(p) d p \\
& =\frac{1}{e-2} \int_{0}^{1} p^{3} e^{p} d p
\end{aligned}
$$

After some calculation, this yields

$$
\mathbf{P}(B \mid A)=\frac{1}{e-2} \cdot(6-2 e)=\frac{0.564}{0.718} \approx 0.786 .
$$

