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Solution to Problem 3.1. The random variable Y = g(X) is discrete and its PMF
is given by

pY (1) = P(X ≤ 1/3) = 1/3, pY (2) = 1− pY (1) = 2/3.

Thus,

E[Y ] =
1

3
· 1 +

2

3
· 2 =

5

3
.

The same result is obtained using the expected value rule:

E[Y ] =

∫ 1

0

g(x)fX(x) dx =

∫ 1/3

0

dx+

∫ 1

1/3

2 dx =
5

3
.

Solution to Problem 3.2. We have∫ ∞

−∞
fX(x)dx =

∫ ∞

−∞

λ

2
e−λ|x| dx = 2 · 1

2

∫ ∞

0

λe−λx dx = 2 · 1

2
= 1,

where we have used the fact
∫∞
0
λe−λxdx = 1, i.e., the normalization property of the

exponential PDF. By symmetry of the PDF, we have E[X] = 0. We also have

E[X2] =

∫ ∞

−∞
x2 λ

2
e−λ|x|dx =

∫ ∞

0

x2λe−λxdx =
2

λ2
,

where we have used the fact that the second moment of the exponential PDF is 2/λ2.
Thus

var(X) = E[X2]−
(
E[X]

)2
= 2/λ2.

Solution to Problem 3.5. Let A = bh/2 be the area of the given triangle, where
b is the length of the base, and h is the height of the triangle. From the randomly
chosen point, draw a line parallel to the base, and let Ax be the area of the triangle
thus formed. The height of this triangle is h − x and its base has length b(h − x)/h.
Thus Ax = b(h− x)2/(2h). For x ∈ [0, h], we have

FX(x) = 1−P(X > x) = 1− Ax

A
= 1− b(h− x)2/(2h)

bh/2
= 1−

(
h− x

h

)2

,

while FX(x) = 0 for x < 0 and FX(x) = 1 for x > h.
The PDF is obtained by differentiating the CDF. We have

fX(x) =
dFX

dx
(x) =

{
2(h− x)

h2
, if 0 ≤ x ≤ h,

0, otherwise.
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Solution to Problem 3.6. Let X be the waiting time and Y be the number of
customers found. For x < 0, we have FX(x) = 0, while for x ≥ 0,

FX(x) = P(X ≤ x) =
1

2
P(X ≤ x |Y = 0) +

1

2
P(X ≤ x |Y = 1).

Since

P(X ≤ x |Y = 0) = 1,

P(X ≤ x |Y = 1) = 1− e−λx,

we obtain

FX(x) =

{ 1

2
(2− e−λx), if x ≥ 0,

0, otherwise.

Note that the CDF has a discontinuity at x = 0. The random variable X is neither
discrete nor continuous.

Solution to Problem 3.7. (a) We first calculate the CDF of X. For x ∈ [0, r], we
have

FX(x) = P(X ≤ x) =
πx2

πr2
=
(
x

r

)2

.

For x < 0, we have FX(x) = 0, and for x > r, we have FX(x) = 1. By differentiating,
we obtain the PDF

fX(x) =

{
2x

r2
, if 0 ≤ x ≤ r,

0, otherwise.

We have

E[X] =

∫ r

0

2x2

r2
dx =

2r

3
.

Also

E[X2] =

∫ r

0

2x3

r2
dx =

r2

2
,

so

var(X) = E[X2]−
(
E[X]

)2
=
r2

2
− 4r2

9
=
r2

18
.

(b) Alvin gets a positive score in the range [1/t,∞) if and only if X ≤ t, and otherwise
he gets a score of 0. Thus, for s < 0, the CDF of S is FS(s) = 0. For 0 ≤ s < 1/t, we
have

FS(s) = P(S ≤ s) = P(Alvin’s hit is outside the inner circle) = 1−P(X ≤ t) = 1− t2

r2
.

For 1/t < s, the CDF of S is given by

FS(s) = P(S ≤ s) = P(X ≤ t)P(S ≤ s |X ≤ t) + P(X > t)P(S ≤ s |X > t).
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We have

P(X ≤ t) =
t2

r2
, P(X > t) = 1− t2

r2
,

and since S = 0 when X > t,

P(S ≤ s |X > t) = 1.

Furthermore,

P(S ≤ s |X ≤ t) = P(1/X ≤ s |X ≤ t) =
P(1/s ≤ X ≤ t)

P(X ≤ t)
=

πt2 − π(1/s)2

πr2

πt2

πr2

= 1− 1

s2t2
.

Combining the above equations, we obtain

P(S ≤ s) =
t2

r2

(
1− 1

s2t2

)
+ 1− t2

r2
= 1− 1

s2r2
.

Collecting the results of the preceding calculations, the CDF of S is

FS(s) =


0, if s < 0,

1− t2

r2
, if 0 ≤ s < 1/t,

1− 1

s2r2
, if 1/t ≤ s.

Because FS has a discontinuity at s = 0, the random variable S is not continuous.

Solution to Problem 3.8. (a) By the total probability theorem, we have

FX(x) = P(X ≤ x) = pP(Y ≤ x) + (1− p)P(Z ≤ x) = pFY (x) + (1− p)FZ(x).

By differentiating, we obtain

fX(x) = pfY (x) + (1− p)fZ(x).

(b) Consider the random variable Y that has PDF

fY (y) =

{
λeλy, if y < 0
0, otherwise,

and the random variable Z that has PDF

fZ(z) =

{
λe−λz, if y ≥ 0
0, otherwise.

We note that the random variables −Y and Z are exponential. Using the CDF of the
exponential random variable, we see that the CDFs of Y and Z are given by

FY (y) =

{
eλy, if y < 0,
1, if y ≥ 0,
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FZ(z) =
{

0, if z < 0,
1− e−λz, if z ≥ 0.

We have fX(x) = pfY (x) + (1 − p)fZ(x), and consequently FX(x) = pFY (x) + (1 −
p)FZ(x). It follows that

FX(x) =

{
peλx, if x < 0,
p+ (1− p)(1− e−λx), if x ≥ 0,

=

{
peλx, if x < 0,
1− (1− p)e−λx, if x ≥ 0.

Solution to Problem 3.11. (a) X is a standard normal, so by using the normal
table, we have P(X ≤ 1.5) = Φ(1.5) = 0.9332. Also P(X ≤ −1) = 1 − Φ(1) =
1− 0.8413 = 0.1587.

(b) The random variable (Y − 1)/2 is obtained by subtracting from Y its mean (which
is 1) and dividing by the standard deviation (which is 2), so the PDF of (Y − 1)/2 is
the standard normal.

(c) We have, using the normal table,

P(−1 ≤ Y ≤ 1) = P
(
−1 ≤ (Y − 1)/2 ≤ 0

)
= P(−1 ≤ Z ≤ 0)

= P(0 ≤ Z ≤ 1)

= Φ(1)− Φ(0)

= 0.8413− 0.5

= 0.3413,

where Z is a standard normal random variable.

Solution to Problem 3.12. The random variable Z = X/σ is a standard normal,
so

P(X ≥ kσ) = P(Z ≥ k) = 1− Φ(k).

From the normal tables we have

Φ(1) = 0.8413, Φ(2) = 0.9772, Φ(3) = 0.9986.

Thus P(X ≥ σ) = 0.1587, P(X ≥ 2σ) = 0.0228, P(X ≥ 3σ) = 0.0014.
We also have

P
(
|X| ≤ kσ

)
= P

(
|Z| ≤ k

)
= Φ(k)−P(Z ≤ −k) = Φ(k)−

(
1− Φ(k)

)
= 2Φ(k)− 1.

Using the normal table values above, we obtain

P(|X| ≤ σ) = 0.6826, P(|X| ≤ 2σ) = 0.9544, P(|X| ≤ 3σ) = 0.9972,

where t is a standard normal random variable.
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Solution to Problem 3.13. Let X and Y be the temperature in Celsius and
Fahrenheit, respectively, which are related by X = 5(Y − 32)/9. Therefore, 59 degrees
Fahrenheit correspond to 15 degrees Celsius. So, if Z is a standard normal random
variable, we have using E[X] = σX = 10,

P(Y ≤ 59) = P(X ≤ 15) = P

(
Z ≤ 15−E[X]

σX

)
= P(Z ≤ 0.5) = Φ(0.5).

From the normal tables we have Φ(0.5) = 0.6915, so P(Y ≤ 59) = 0.6915.

Solution to Problem 3.15. (a) Since the area of the semicircle is πr2/2, the joint
PDF of X and Y is fX,Y (x, y) = 2/πr2, for (x, y) in the semicircle, and fX,Y (x, y) = 0,
otherwise.

(b) To find the marginal PDF of Y , we integrate the joint PDF over the range of
X. For any possible value y of Y , the range of possible values of X is the interval
[−
√
r2 − y2,

√
r2 − y2], and we have

fY (y) =

∫ √
r2−y2

−
√

r2−y2

2

πr2
dx =

 4
√
r2 − y2

πr2
, if 0 ≤ y ≤ r,

0, otherwise.

Thus,

E[Y ] =
4

πr2

∫ r

0

y
√
r2 − y2 dy =

4r

3π
,

where the integration is performed using the substitution z = r2 − y2.

(c) There is no need to find the marginal PDF fY in order to find E[Y ]. Let D denote
the semicircle. We have, using polar coordinates

E[Y ] =

∫ ∫
(x,y)∈D

yfX,Y (x, y) dx dy =

∫ π

0

∫ r

0

2

πr2
s(sin θ)s ds dθ =

4r

3π
.

Solution to Problem 3.16. Let A be the event that the needle will cross a horizontal
line, and let B be the probability that it will cross a vertical line. From the analysis of
Example 3.11, we have that

P(A) =
2l

πa
, P(B) =

2l

πb
.

Since at most one horizontal (or vertical) line can be crossed, the expected number of
horizontal lines crossed is P(A) [or P(B), respectively]. Thus the expected number of
crossed lines is

P(A) + P(B) =
2l

πa
+

2l

πb
=

2l(a+ b)

πab
.

The probability that at least one line will be crossed is

P(A ∪B) = P(A) + P(B)−P(A ∩B).
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Let X (or Y ) be the distance from the needle’s center to the nearest horizontal (or
vertical) line. Let Θ be the angle formed by the needle’s axis and the horizontal lines
as in Example 3.11. We have

P(A ∩B) = P
(
X ≤ l sinΘ

2
, Y ≤ l cosΘ

2

)
.

We model the triple (X,Y,Θ) as uniformly distributed over the set of all (x, y, θ) that
satisfy 0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2, and 0 ≤ θ ≤ π/2. Hence, within this set, we have

fX,Y,Θ(x, y, θ) =
8

πab
.

The probability P(A ∩B) is

P
(
X ≤ (l/2) sinΘ, Y ≤ (l/2) cosΘ

)
=

∫ ∫
x≤(l/2) sin θ
y≤(l/2) cos θ

fX,Y,Θ(x, y, θ) dx dy dθ

=
8

πab

∫ π/2

0

∫ (l/2) cos θ

0

∫ (l/2) sin θ

0

dx dy dθ

=
2l2

πab

∫ π/2

0

cos θ sin θ dθ

=
l2

πab
.

Thus we have

P(A ∪B) = P(A) + P(B)−P(A ∩B) =
2l

πa
+

2l

πb
− l2

πab
=

l

πab

(
2(a+ b)− l

)
.

Solution to Problem 3.18. (a) We have

E[X] =

∫ 3

1

x2

4
dx =

x3

12

∣∣∣3
1

=
27

12
− 1

12
=

26

12
=

13

6
,

P(A) =

∫ 3

2

x

4
dx =

x2

8

∣∣∣3
2

=
9

8
− 4

8
=

5

8
.

We also have

fX|A(x) =

{
fX(x)

P(A)
, if x ∈ A,

0, otherwise,

=

{
2x

5
, if 2 ≤ x ≤ 3,

0, otherwise,
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from which we obtain

E[X |A] =

∫ 3

2

x · 2x

5
dx =

2x3

15

∣∣∣3
2

=
54

15
− 16

15
=

38

15
.

(b) We have

E[Y ] = E[X2] =

∫ 3

1

x3

4
dx = 5,

and

E[Y 2] = E[X4] =

∫ 3

1

x5

4
dx =

91

3
.

Thus,

var(Y ) = E[Y 2]−
(
E[Y ]

)2
=

91

3
− 52 =

16

3
.

Solution to Problem 3.19. (a) We have, using the normalization property,∫ 2

1

cx−2 dx = 1,

or

c =
1∫ 2

1

x−2 dx

= 2.

(b) We have

P(A) =

∫ 2

1.5

2x−2 dx =
1

3
,

and

fX|A(x |A) =

{
6x−2, if 1.5 < x ≤ 2,
0, otherwise.

(c) We have

E[Y |A] = E[X2 |A] =

∫ 2

1.5

6x−2x2 dx = 3,

E[Y 2 |A] = E[X4 |A] =

∫ 2

1.5

6x−2x4 dx =
37

4
,

and

var(Y |A) =
37

4
− 32 =

1

4
.

Solution to Problem 3.20. The expected value in question is

E[Time] =
(
5 + E[stay of 2nd student]

)
·P(1st stays no more than 5 minutes)

+
(
E[stay of 1st | stay of 1st ≥ 5] + E[stay of 2nd]

)
·P(1st stays more than 5 minutes).
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We have E[stay of 2nd student] = 30, and, using the memorylessness property of the
exponential distribution,

E[stay of 1st | stay of 1st ≥ 5] = 5 + E[stay of 1st] = 35.

Also
P(1st student stays no more than 5 minutes) = 1− e−5/30,

P(1st student stays more than 5 minutes) = e−5/30.

By substitution we obtain

E[Time] = (5 + 30) · (1− e−5/30) + (35 + 30) · e−5/30 = 35 + 30 · e−5/30 = 60.394.

Solution to Problem 3.21. (a) We have fY (y) = 1/l, for 0 ≤ y ≤ l. Furthermore,
given the value y of Y , the random variableX is uniform in the interval [0, y]. Therefore,
fX|Y (x | y) = 1/y, for 0 ≤ x ≤ y. We conclude that

fX,Y (x, y) = fY (y)fX|Y (x | y) =

{ 1

l
· 1

y
, 0 ≤ x ≤ y ≤ l,

0, otherwise.

(b) We have

fX(x) =

∫
fX,Y (x, y) dy =

∫ l

x

1

ly
dy =

1

l
ln(l/x), 0 ≤ x ≤ l.

(c) We have

E[X] =

∫ l

0

xfX(x) dx =

∫ l

0

x

l
ln(l/x) dx =

l

4
.

(d) The fraction Y/l of the stick that is left after the first break, and the further fraction
X/Y of the stick that is left after the second break are independent. Furthermore, the
random variables Y and X/Y are uniformly distributed over the sets [0, l] and [0, 1],
respectively, so that E[Y ] = l/2 and E[X/Y ] = 1/2. Thus,

E[X] = E[Y ]E
[
X

Y

]
=
l

2
· 1

2
=
l

4
.

Solution to Problem 3.22. Define coordinates such that the stick extends from
position 0 (the left end) to position 1 (the right end). Denote the position of the first
break by X and the position of the second break by Y . With method (ii), we have
X < Y . With methods (i) and (iii), we assume that X < Y and we later account for
the case Y < X by using symmetry.

Under the assumption X < Y , the three pieces have lengths X, Y − X, and
1 − Y . In order that they form a triangle, the sum of the lengths of any two pieces
must exceed the length of the third piece. Thus they form a triangle if

X < (Y −X) + (1− Y ), (Y −X) < X + (1− Y ), (1− Y ) < X + (Y −X).
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y 

1
f X,Y(x ,y) = 2

f X |Y(x  | y )

1 -  y 

1

(a ) ( b )

x 11 -  y 

y 

x 11 -  y 

Figure 3.1: (a) The joint PDF. (b) The conditional density of X.

These conditions simplify to

X < 0.5, Y > 0.5, Y −X < 0.5.

Consider first method (i). For X and Y to satisfy these conditions, the pair
(X,Y ) must lie within the triangle with vertices (0, 0.5), (0.5, 0.5), and (0.5, 1). This
triangle has area 1/8. Thus the probability of the event that the three pieces form a
triangle and X < Y is 1/8. By symmetry, the probability of the event that the three
pieces form a triangle and X > Y is 1/8. Since there two events are disjoint and form
a partition of the event that the three pieces form a triangle, the desired probability is
1/8 + 1/8 = 1/4.

Consider next method (ii). Since X is uniformly distributed on [0, 1] and Y is
uniformly distributed on [X, 1], we have for 0 ≤ x ≤ y ≤ 1,

fX,Y (x, y) = fX(x) fY |X(y |x) = 1 · 1

1− x
.

The desired probability is the probability of the triangle with vertices (0, 0.5), (0.5, 0.5),
and (0.5, 1):∫ 1/2

0

∫ x+1/2

1/2

fX,Y (x, y)dydx =

∫ 1/2

0

∫ x+1/2

1/2

1

1− x
dydx =

∫ 1/2

0

x

1− x
dydx = −1

2
+ln 2.

Consider finally method (iii). Consider first the case X < 0.5. Then the larger
piece after the first break is the piece on the right. Thus, as in method (ii), Y is
uniformly distributed on [X, 1] and the integral above gives the probability of a triangle
being formed and X < 0.5. Considering also the case X > 0.5 doubles the probability,
giving a final answer of −1 + 2 ln 2.

Solution to Problem 3.23. (a) The area of the triangle is 1/2, so that fX,Y (x, y) =
1/2, on the triangle indicated in Fig. 3.1(a), and zero everywhere else.
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(b) We have

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx =

∫ 1−y

0

2 dx = 2(1− y), 0 ≤ y ≤ 1.

(c) We have

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
=

1

1− y
, 0 ≤ x ≤ 1− y.

The conditional density is shown in the figure.
Intuitively, since the joint PDF is constant, the conditional PDF (which is a

“slice” of the joint, at some fixed y) is also constant. Therefore, the conditional PDF
must be a uniform distribution. Given that Y = y, X ranges from 0 to 1−y. Therefore,
for the PDF to integrate to 1, its height must be equal to 1/(1− y), in agreement with
the figure.

(d) For y > 1 or y < 0, the conditional PDF is undefined, since these values of y are
impossible. For 0 ≤ y < 1, the conditional mean E[X |Y = y] is obtained using the
uniform PDF in Fig. 3.1(b), and we have

E[X |Y = y] =
1− y

2
, 0 ≤ y < 1.

For y = 1, X must be equal to 0, with certainty, so E[X |Y = 1] = 0. Thus, the above
formula is also valid when y = 1. The conditional expectation is undefined when y is
outside [0, 1].

The total expectation theorem yields

E[X] =

∫ 1

0

1− y

2
fY (y) dy =

1

2
− 1

2

∫ 1

0

yfY (y) dy =
1−E[Y ]

2
.

(e) Because of symmetry, we must have E[X] = E[Y ]. Therefore, E[X] =
(
1−E[X]

)
/2,

which yields E[X] = 1/3.

Solution to Problem 3.24. The conditional density of X given that Y = y is
uniform over the interval [0, (2− y)/2], and we have

E[X |Y = y] =
2− y

4
, 0 ≤ y ≤ 2.

Therefore, using the total expectation theorem,

E[X] =

∫ 2

0

2− y

4
fY (y) dy =

2

4
− 1

4

∫ 2

0

yfY (y) dy =
2−E[Y ]

4
.

Similarly, the conditional density of Y given that X = x is uniform over the
interval [0, 2(1− x)], and we have

E[Y |X = x] = 1− x, 0 ≤ x ≤ 1.
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Therefore,

E[Y ] =

∫ 1

0

(1− x)fX(x) dx = 1−E[X].

By solving the two equations above for E[X] and E[Y ], we obtain

E[X] =
1

3
, E[Y ] =

2

3
.

Solution to Problem 3.25. Let C denote the event that X2 + Y 2 ≥ c2. The
probability P(C) can be calculated using polar coordinates, as follows:

P(C) =
1

2πσ2

∫ 2π

0

∫ ∞

c

re−r2/2σ2
dr dθ

=
1

σ2

∫ ∞

c

re−r2/2σ2
dr

= e−c2/2σ2
.

Thus, for (x, y) ∈ C,

fX,Y |C(x, y) =
fX,Y (x, y)

P(C)
=

1

2πσ2
e
−

1

2σ2
(x2 + y2 − c2)

.

Solution to Problem 3.34. (a) Let A be the event that the first coin toss resulted
in heads. To calculate the probability P(A), we use the continuous version of the total
probability theorem:

P(A) =

∫ 1

0

P(A |P = p)fP (p) dp =

∫ 1

0

p2ep dp,

which after some calculation yields

P(A) = e− 2.

(b) Using Bayes’ rule,

fP |A(p) =
P(A|P = p)fP (p)

P(A)

=

 p2ep

e− 2
, 0 ≤ p ≤ 1,

0, otherwise.

(c) Let B be the event that the second toss resulted in heads. We have

P(B |A) =

∫ 1

0

P(B |P = p,A)fP |A(p) dp

=

∫ 1

0

P(B |P = p)fP |A(p) dp

=
1

e− 2

∫ 1

0

p3ep dp.
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After some calculation, this yields

P(B |A) =
1

e− 2
· (6− 2e) =

0.564

0.718
≈ 0.786.
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