CHAPTER 4

Solution to Problem 4.1. Let Y = /| X|. We have, for 0 <y <1,

Fy(y) =P(Y <y) =P(\/|X|<y) =P(—* < X <¢°) =¢°,
and therefore by differentiation,
fry)=2y, for0<y<1
Let Y = —In|X|. We have, for y > 0,
Fy(y) =P(Y <y) =P(n|X| > ) =P(X 2 ¢ ") 4 P(X <~ ") =1 ¢,
and therefore by differentiation
fry)=e?,  fory=0,
so Y is an exponential random variable with parameter 1. This exercise provides a

method for simulating an exponential random variable using a sample of a uniform
random variable.

Solution to Problem 4.2. Let Y = e¢*. We first find the CDF of Y, and then take
the derivative to find its PDF. We have

P(X <Iny), ify>0,

< = X< =
P(Y <y)=P(e” <y) {07 otherwise.

Therefore,

) - { %quny), ify >0,

0, otherwise,

1
B { Sx(ny), ity >0,
0, otherwise.

When X is uniform on [0, 1], the answer simplifies to

1, if0<y<e,
fry)=9 v

0, otherwise.
Solution to Problem 4.3. Let Y = |X|'/?. We have
Fy(y) =P(Y <y) =P(IX|"? <y) =P(—4’ < X <¢*) = Fx(s°) - Fx(—y"),
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and therefore, by differentiating,

fr(y) =3y fx(v°) + 3y fx(=y®),  fory>0.
Let Y = |X|'/*. We have
Fy(y) =P(Y <y) =P(IX|"* <y) =P(—y* < X <y*) = Fx(y") - Fx(—y"),
and therefore, by differentiating,

fr(y) =4 fx (") +49° fx (—y"),  fory>o0.

Solution to Problem 4.4. We have

0, if y <0,
Foy) = J POy <X <5 +PR0—y <X <20), i0<y<5,
vy P(20 —y < X < 20), if 5 <y < 15,
1, if y > 15.

Using the CDF of X, we have
Ph—-—y<X<5)=Fx(5)— Fx(5—vy),

P(20 —y < X < 20) = Fx(20) — Fx(20 —y).

Thus,
0, if y <0,
Fy(y) = Fx(5) — Fx(5—y) + Fx(20) — Fx (20 —y), if0<y<5,
YW= Fx(20) — Fx (20 — y), if 5 <y <15,
1, if y > 15.

Differentiating, we obtain

fx(20 —y), if 5 <y <15,

fr(y) =
0, otherwise,

consistent with the result of Example 3.14.

Solution to Problem 4.5. Let Z = |X —Y|. We have
Fz(z)=P(IX -Y|<z)=1-(1-2)>

(To see this, draw the event of interest as a subset of the unit square and calculate its
area.) Taking derivatives, the desired PDF is

_[2(1-2), if0<2z<1,
f2(2) = {O, otherwise.
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Solution to Problem 4.6. Let Z = |X — Y|. To find the CDF, we integrate the
joint PDF of X and Y over the region where |X — Y| < z for a given z. In the case
where z < 0 or z > 1, the CDF is 0 and 1, respectively. In the case where 0 < z < 1,
we have

Fz(z)=P(X-Y <z, X>Y)+PY -X <z X<Y).

The events {X —Y < 2z, X > Y} and {Y — X < z, X < Y} can be identified with
subsets of the given triangle. After some calculation using triangle geometry, the areas
of these subsets can be verified to be z/2 + 2%/4 and 1/4 — (1 — 2)?/4, respectively.
Therefore, since fx y(z,y) =1 for all (z,y) in the given triangle,

Fz(z)—<;+z4)+<i(1_4z))—z

0, ifz<0,
Fz(z) =4 2, if0<z<1,
1, ifz>1.

Thus,

By taking the derivative with respect to z, we obtain

1, if0<z<1,
fz(2) = {0, otherwise.

Solution to Problem 4.7. Let X and Y be the two points, and let Z = max{X,Y}.
For any ¢ € [0, 1], we have

P(Z <1)=P(X <OP(Y <) =1,
and by differentiating, the corresponding PDF is

0, ifz<0,
fz(z) =< 2z, if0<2<1,
0, ifz>1.

oo 1 2
E[Z] = / z2fz(2)dz = / 22%dz = 3
—oo 0

The distance of the largest of the two points to the right endpoint is 1 — Z, and its
expected value is 1 — E[Z] = 1/3. A symmetric argument shows that the distance of
the smallest of the two points to the left endpoint is also 1/3. Therefore, the expected
distance between the two points must also be 1/3.

Thus, we have

Solution to Problem 4.8. Note that fx(z) and fy(z — z) are nonzero only when
x > 0 and =z < z, respectively. Thus, in the convolution formula, we only need to
integrate for x ranging from 0 to z:

fz(z) = / Ix@)fy(z—2)dx = / Ae M Ne MET) g = )\2672/ de = N2ze 7.
NS 0 0
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Solution to Problem 4.9. Let Z = X — Y. We will first calculate the CDF Fz(z)
by considering separately the cases z > 0 and z < 0. For z > 0, we have (see the left
side of Fig. 4.6)

Fz(z)=P(X -Y <2)
=1-PX-Y >2)

=1 —/ (/ fxy(z,y) dx) dy
0 z+y

=1 —/ pe Y (/ e dw) dy
0 z+y

1— / Me*uyefh(ZH/) dy
0

-1 e—/\z/ Me—(/\-‘ru)y dy
0

[k —Az
e .
At p

For the case z < 0, we have using the preceding calculation

=1-

Fz(2)=1—-Fz(—2)=1- (1 - Aiue‘““z)) = ﬁe”z.

Combining the two cases z > 0 and z < 0, we obtain

lfAi e, if 2 >0,
Fy(z) = \ ’
e"?, if 2 <0.
A+ p
The PDF of Z is obtained by differentiating its CDF. We have
%67)\2, if 2> 0,
f2z) =4 " F
7“6”’27 if 2 < 0.
A+ p

For an alternative solution, fix some z > 0 and note that fy (z — z) is nonzero
only when x > z. Thus,

Feov(z) = / T @y (o - 2) de

:/ e M pe HE2) gy

oo
= )\peu/ e~ AT gy
z

1
= e —— e~ (A tm)z
A W
_ A ehe
A+
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in agreement with the earlier answer. The solution for the case z < 0 is obtained with
a similar calculation.

Solution to Problem 4.10. We first note that the range of possible values of Z are
the integers from the range [1,5]. Thus we have

pz(z) =0, ifz+#1,2,3,4,5.

We calculate pz(z) for each of the values z = 1,2, 3,4, 5, using the convolution formula.
We have

Wl
N | —
(=}

- pr(x)py(l —a) =px(L)py(0) =

where the second equality above is based on the fact that for x # 1 either px(z) or
py (1 — z) (or both) is zero. Similarly, we obtain

p2(2) = px (V)py (1) + px (2)py (0) = % : % v % , % _ 1587
pz(3) = px (Dpy (2) + px (2)py (1) + px (3)py (0) = % . % n % , % n % , % _ ;
pz(4) = px (2)py (2) + px (3)py (1) = % . % n % , % _1
pz(5) = px(3)py (2) = % é:%

Solution to Problem 4.11. The convolution of two Poisson PMFs is of the form

k .
Z )\167)\ . Mk ek 7()\+;1,)Z )\z k—i
— 7! (k—i)! i (k

i=

We have
k

k
k\ i k—i k!
A k _ )\'L k—1 — )\7, k—1
At w) Zo(z) " ;u(k B
Thus, the desired PMF is

o~ (O+w) k BN E—t e Om)

k! Zz‘[ (k—i)! = A+ ),

=0

which is a Poisson PMF with mean \ 4 p.
Solution to Problem 4.12. Let V = X + Y. As in Example 4.10, the PDF of V is

v, 0<v <1,
frlv)=<¢2—-v, 1<v<2
0, otherwise.

Let W=X+Y +Z =V + Z. We convolve the PDFs fy and fz, to obtain

w) = / Fo (0) f2(w — o) do
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We first need to determine the limits of the integration. Since fyv (v) = 0 outside the
range 0 < v < 2, and fw(w — v) = 0 outside the range 0 < w — v < 1, we see that the
integrand can be nonzero only if

0<v <2, and w—1<v<w.
We consider three separate cases. If w < 1, we have

U)2

fw(w) = /Ow Fo () (w0 —v) dv = /vadv - v

If 1 <w <2, we have

Il
T
i )
-

e

U

e

+
»—\

/—\E

[N}

|

<

N

QU

e

Finally, if 2 < w < 3, we have

fw(w)=/ fv(v)fz(w*v)dv=/ @ vy =B

To summarize,

w?/2, 0<w<1,

) 1—(w-1)%2-2-w)?/2, 1<w<2,
fw@) =9 5 2 2<w<3,
0, otherwise.

Solution to Problem 4.13. We have X —Y = X+ Z — (a+0b), where Z =a+b—-Y
is distributed identically with X and Y. Thus, the PDF of X + Z is the same as the
PDF of X + Y, and the PDF of X — Y is obtained by shifting the PDF of X + Y to
the left by a + b.

Solution to Problem 4.14. For all z > 0, we have, using the independence of X
and Y, and the form of the exponential CDF,
Fz(z) = P(min{X,Y} < 2)
=1- P(min{X,Y} > z)
=1-P(X>2z2Y>z2)
=1-P(X >2)P(Y > z2)
e

—1— e*(AJﬂ“)Z'
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This is recognized as the exponential CDF with parameter A + p. Thus, the mini-
mum of two independent exponentials with parameters A and u is an exponential with
parameter A + p.

Solution to Problem 4.17. Because the covariance remains unchanged when we
add a constant to a random variable, we can assume without loss of generality that X
and Y have zero mean. We then have

cov(X - Y, X +Y)=E[(X - Y)(X +Y)] = E[X?] - E[Y?] = var(X) — var(Y) =0,
since X and Y were assumed to have the same variance.
Solution to Problem 4.18. We have

cov(R,S) = E[RS] — E[RE[S] = E[WX + WY + X* + XY] = E[X°] = 1,

and

SO

_ cov(R, S) 1 .
var(R)var(S) 2

We also have
cov(R,T) =E[RT]| - E[RE[T]|=EWY +WZ+ XY + XZ] =0,

so that
p(R,T)=0.

Solution to Problem 4.19. To compute the correlation coefficient

cov(X,Y)

p(X, Y) =
OxX0Yy

we first compute the covariance:

cov(X,Y) = E[XY] — E[X|E[Y]

E[aX +bX® + cX’] — E[X]|E[Y]
aE[X] + bE[X?] + cE[X?)

=b.

We also have
var(Y) = var(a + bX + ¢X?)
— E[(a+bX +cX?)?] - (Ela+bX + cX?))’
= (a® + 2ac + b° + 3¢%) — (a® + & + 2ac)
=b+ 202,
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and therefore, using the fact var(X) =1,

b

p(X,Y) = N

Solution to Problem 4.22. If the gambler’s fortune at the beginning of a round is
a, the gambler bets a(2p —1). He therefore gains a(2p — 1) with probability p, and loses
a(2p — 1) with probability 1 — p. Thus, his expected fortune at the end of a round is

a(l +p2p—-1)—(1—p)(2p— 1)) = a(l +(2p— 1)2).

Let Xj be the fortune after the kth round. Using the preceding calculation, we

have
E[Xp1 | Xi] = (1+(2p - 1)%) Xk

Using the law of iterated expectations, we obtain
E[Xi1] = (1+ (2p — 1)*) E[Xu],

and
E[X1] = (1+ (2p—1)*)a.

We conclude that
E[X,]=(1+(2p—1)°) 2.

Solution to Problem 4.23. (a) Let W be the number of hours that Nat waits. We
have
EX]|=PO<X<DNDEW|0<X<I1]+P(X>1EW|X >1].

Since W > 0 only if X > 1, we have

EW]=P(X > DE[W|X > 1] =

N —
N —
i

(b) Let D be the duration of a date. We have E[D|0 < X < 1] = 3. Furthermore,
when X > 1, the conditional expectation of D given X is (3 — X)/2. Hence, using the
law of iterated expectations,

E[D|X>1]:E[E[D|X]|X>1}:E{¥|X>1}.
Therefore,
ED|=PO< X <DE[D|0<X <1]+P(X >1DE[D|X > 1]
1 1 3-X
_5.3+§~E[7\X>1}
_ 3,1 3 EX|X >1]
T2 2\ 2 2
_3,1(3 32
T2 2\ 2 2
_15
=<
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(c) The probability that Pat will be late by more than 45 minutes is 1/8. The number of
dates before breaking up is the sum of two geometrically distributed random variables
with parameter 1/8, and its expected value is 2 - 8 = 16.

Solution to Problem 4.24. (a) Consider the following two random variables:

X = amount of time the professor devotes to his task [exponentially distributed with
parameter A(y) = 1/(5 — y)];

Y = length of time between 9 a.m. and his arrival (uniformly distributed between 0
and 4).

Note that E[Y] = 2. We have

Ewwyzywzxé5:5f%

which implies that
EX|Y]=5-Y,
and

EX]=E[EX|Y]]=E5-Y]=5-E[Y]=5-2=3.

(b) Let Z be the length of time from 9 a.m. until the professor completes the task.
Then,
Z=X+4+Y.

We already know from part (a) that E[X] = 3 and E[Y] = 2, so that
E[Z] = E[X]+ E[Y]=3+2=5.

Thus the expected time that the professor leaves his office is 5 hours after 9 a.m.
(c) We define the following random variables:

W = length of time between 9 a.m. and arrival of the Ph.D. student (uniformly dis-
tributed between 9 a.m. and 5 p.m.).

R = amount of time the student will spend with the professor, if he finds the professor
(uniformly distributed between 0 and 1 hour).

T = amount of time the professor will spend with the student.

Let also F' be the event that the student finds the professor.
To find E[T], we write

E[T] = P(F)E[T | F] + P(F)E[T | F*]

Using the problem data,
1

B[T|F] =BIR] = 5

(this is the expected value of a uniformly distribution ranging from 0 to 1),
E[T|F]=0
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(since the student leaves if he does not find the professor). We have

B[] = BIT | FIP(F) = JP(F),

so we need to find P(F).
In order for the student to find the professor, his arrival should be between the
arrival and the departure of the professor. Thus
PF)=PY <W<<X+Y).
We have that W can be between 0 (9 a.m.) and 8 (5 p.m.), but X +Y can be any
value greater than 0. In particular, it may happen that the sum is greater than the

upper bound for W. We write

PF)=PY<W<X+Y)=1—(PW<Y)+P(W>X+Y))

4 Y
1 1 1
P(W<Y):/ f/ —dwdy = -
o 4/, 8 4

4
P(W>X+Y):/ P(W>X+Y|Y =y)fr(y)dy
0

We have

and

:/ PX <W =YY =y)fr(y)dy
_ / / Fu iy (w — ) fur (w) f () duw dy

4 8 w—y
1/ 1/ 1 _ =
= = = e v drdwdy
/O 1/, 8), 55—y
2 1 [

_ 8-y
= — — — 5—
3 + 52 ), (b —y)e 5=v dy.

Integrating numerically, we have

/4(5 — y)efg%/-fj dy = 1.7584.
0
Thus,
PY<W<X+Y)=1-(PW<Y)+P(W>X+Y))=1-0.68=0.32.
The expected amount of time the professor will spend with the student is then
B[T] = %P(F) - % 0.32 = 0.16 = 9.6 mins.

Next, we want to find the expected time the professor will leave his office. Let Z
be the length of time measured from 9 a.m. until he leaves his office. If the professor
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doesn’t spend any time with the student, then Z will be equal to X +Y. On the other
hand, if the professor is interrupted by the student, then the length of time will be
equal to X +Y + R. This is because the professor will spend the same amount of total
time on the task regardless of whether he is interrupted by the student. Therefore,

EZ)=P(F)E[Z|F|+P(F)E[Z|F | =P(F)E[X +Y + R + P(F)E[X + Y].
Using the results of the earlier calculations,
E[X+Y]=5,

111
EX+Y+ R =EX+Y]+ER] =5+ =7

Therefore,

1
E[Z] =0.68-5+0.32- 13 =5.16.

Thus the expected time the professor will leave his office is 5.16 hours after 9 a.m.

Solution to Problem 4.29. The transform is given by

M(s) = E[e*¥] = 1eS + 1625 + 1e?’s.

2 4 4

We have p 1 5 3 .
EX:* = — — —_ = —

KI=ZM6)| _ =o+t7t1=71

d? 1 4 9 15

277 = — — - = —

BXT=gaMe)| =5+t =7

A 1 8 27 37

31 a4 _ 1,0 et 9ol

BXT=aMe)| =5+t T =7

Solution to Problem 4.30. The transform associated with X is
Mx(s) = e* /2.
By taking derivatives with respect to s, we find that

E[X]=0, E[X’|=1, E[X’=0, E[X' =3

Solution to Problem 4.31. The transform is

Thus,

e P g e R e



d* 24\ &b 120\
MO =n"55 M=

By setting s = 0, we obtain

6 24 120
E[X°®) = e E[X'] = e E[X°] = =5

Solution to Problem 4.32. (a) We must have M(0) = 1. Ouly the first option
satisfies this requirement.

(b) We have

Solution to Problem 4.33. We recognize this transform as corresponding to the
following mixture of exponential PDFs:

1 —2x 2 —3x
— - 2e + =3¢ 7", forxz >0,
fx(at) = { 3 3 -

0, otherwise.

By the inversion theorem, this must be the desired PDF.

Solution to Problem 4.34. For:=1,2,3, let X;,7=1,2,3, be a Bernoulli random
variable that takes the value 1 if the ith player is successful. We have X = X1+ X2+ X5.
Let ¢; = 1—p;. Convolution of the PMF's of X; and X3 yields the PMF of Z = X; 4+ Xo:

q192, if z =0,

_ ) aip2 +p1ge, ifz=1,

pZ(Z) o p1p2, if z = 2,
0, otherwise.

Convolution of the PMF's of Z and X3 yields the PMF of X = X; + X2 + X3:

q1G293, if x =0,
P192G3 + (1p2q3 + q1q2ps, ifx =1,
px () = § qp2ps + p1geps + pip2gs, ifx =2,
DP1P2D3, if z =3,
0, otherwise.

The transform associated with X is the product of the transforms associated with
Xi,i=1,2,3. We have

Mx (s) = (a1 + p1e°)(q2 + p2€”) (g3 + pse”).
By carrying out the multiplications above, and by examining the coefficients of the
terms e*®, we obtain the probabilities P(X = k). These probabilities are seen to

coincide with the ones computed by convolution.
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Solution to Problem 4.35. We first find ¢ by using the equation

B 34442
1= Mx (0) =cC 3_1
so that ¢ = 2/9. We then obtain
dMx 2 (3—e)(8e* 4 6€3°) + e°(3 + 4e2° + 2¢*%) 37
E[X] = (8) =3 — _s\2 T
dS s=0 9 (3 e ) s=0 18

We now use the identity

3—es 3 1—e$/3 3 3 9 '

which is valid as long as s is small enough so that e® < 3. It follows that

Mx(s) =

2s 3s e’ 628
CBH4e* + 26 (14 T+ ).

NeJ i )
W=

By identifying the coefficients of e°® and e®, we obtain

2 2
px(0) =2, px(1) = o
Let A = {X # 0}. We have
px(k) .
ifk£0,
px|(xeay(k) = ¢ P(4)
0, otherwise,

so that

M)
Ky
P
=
=

E[X|X #0] =

™
Il
—

Il
gk
2
R
2z

Solution to Problem 4.36. (a) We have U = X if X = 1, which happens with
probability 1/3, and U = Z if X = 0, which happens with probability 2/3. Therefore,
U is a mixture of random variables and the associated transform is

1 2

Mu(s) = P(X = 1)My (s) + P(X = 0)Mz(s) = 5 - 5=+ §e3<65*”.
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(b) Let V =2Z + 3. We have

2s 2s
Mv(S) — GBSMz(QS) _ 63863(6 -1) _ e3(s—1+e ).

(c) Let W =Y + Z. We have

2 e
My (s) = My (s)Mz(s) = med( D,

Solution to Problem 4.37. Let X be the number of different types of pizza ordered.

Let X; be the random variable defined by

X — { 1, if a type ¢ pizza is ordered by at least one customer,
‘ 0, otherwise.

We have X = X1 +--- 4+ X, and by the law of iterated expectations,
E[X]=E[E[X|K]| =E[E[X) + -+ X, | K]] = nE[E[X: | K]].

Furthermore, since the probability that a customer does not order a pizza of type 1 is
(n —1)/n, we have

E[Xl\sz]=1—(”;1)k,

so that

E[Xl\K]:k(”;l)K.

Thus, denoting

we have

E[X] :nE[lpr] :nan[pK] :nan[eKlogp] =n —nMk(logp).

Solution to Problem 4.41. (a) Let N be the number of people that enter the
elevator. The corresponding transform is My (s) = ¢~V Let Mx (s) be the common
transform associated with the random variables X;. Since X, is uniformly distributed
within [0, 1], we have

ef—1

S

Mx(s) =

The transform My (s) is found by starting with the transform My (s) and replacing
each occurrence of e with Mx (s). Thus,

My (s) = A Mx ()=1) _ ek(esg1,1)'
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(b) We have using the chain rule

d d MMy (s)—1) 1 A
ElY] = —M- = —M Y X —Z.\=2
V1= Thv(s) = LMx(s)| e L=l
s=0 s=0 s5=0
where we have used the fact that Mx (0) = 1.
(c) From the law of iterated expectations we obtain
A
E[Y] = E[E[Y | N]| = E[NE[X]| = E[N]E[X] = 5

Solution to Problem 4.42. Take X and Y to be normal with means 1 and 2,
respectively, and very small variances. Consider the random variable that takes the
value of X with some probability p and the value of Y with probability 1 — p. This
random variable takes values near 1 and 2 with relatively high probability, but takes
values near its mean (which is 3—2p) with relatively low probability. Thus, this random
variable is not normal.

Now let N be a random variable taking only the values 1 and 2 with probabilities p
and 1—p, respectively. The sum of a number N of independent normal random variables
with mean equal to 1 and very small variance is a mixture of the type discussed above,
which is not normal.

Solution to Problem 4.43. (a) Using the total probability theorem, we have

4
P(X >4)= ZP(k lights are red)P(X > 4|k lights are red).
k=0

. 4 1\*
P(k lights are red) = k (5) .

The conditional PDF of X given that k lights are red, is normal with mean k minutes
and standard deviation (1/2)v/k. Thus, X is a mixture of normal random variables and
the transform associated with its (unconditional) PDF is the corresponding mixture
of the transforms associated with the (conditional) normal PDFs. However, X is not
normal, because a mixture of normal PDFs need not be normal. The probability
P(X > 4|k lights are red) can be computed from the normal tables for each k, and
P(X > 4) is obtained by substituting the results in the total probability formula above.

We have

(b) Let K be the number of traffic lights that are found to be red. We can view X as
the sum of K independent normal random variables. Thus the transform associated
with X can be found by replacing in the binomial transform Mg (s) = (1/24 (1/2)e*)*
the occurrence of e® by the normal transform corresponding to 4 = 1 and o = 1/2.

Thus .
1 1 @222,

Note that by using the formula for the transform, we cannot easily obtain the proba-
bility P(X > 4).

~

61



Solution to Problem 4.44. (a) Using the random sum formulas, we have
E[N] = E[M] E[K],
var(N) = E[M]var(K) + (E[K])Qvar(M).
(b) Using the random sum formulas and the results of part (a), we have
E[Y] = E[N] E[X] = E[M] E[K] E[X],
var(Y) = E[N]var(X) + (E[X])var(N)
— E[M] E[K] var(X) + (E[X]) (E[M] var(K) + (E[K])Qvar(M)).

(c) Let N denote the total number of widgets in the crate, and let X; denote the weight
of the ith widget. The total weight of the crate is

Y=X1+--+Xn,

with
N=Ki+ -+ Ku,

so the framework of part (b) applies. We have

1
E[M] = >’ var(M) = , (geometric formulas),

E[K] = pu, var(M) = p, (Poisson formulas),

1 1
:Xv Va'r(M):ﬁv

Using these expressions into the formulas of part (b), we obtain E[Y] and var(Y'), the
mean and variance of the total weight of a crate.

E[X] (exponential formulas).
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