CHAPTER4

Solution to Problem 4.1. Let $Y=\sqrt{|X|}$. We have, for $0 \leq y \leq 1$,

$$
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}(\sqrt{|X|} \leq y)=\mathbf{P}\left(-y^{2} \leq X \leq y^{2}\right)=y^{2},
$$

and therefore by differentiation,

$$
f_{Y}(y)=2 y, \quad \text { for } 0 \leq y \leq 1 .
$$

Let $Y=-\ln |X|$. We have, for $y \geq 0$,

$$
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}(\ln |X| \geq-y)=\mathbf{P}\left(X \geq e^{-y}\right)+\mathbf{P}\left(X \leq-e^{-y}\right)=1-e^{-y},
$$

and therefore by differentiation

$$
f_{Y}(y)=e^{-y}, \quad \text { for } y \geq 0
$$

so Y is an exponential random variable with parameter 1 . This exercise provides a method for simulating an exponential random variable using a sample of a uniform random variable.
Solution to Problem 4.2. Let $Y=e^{X}$. We first find the CDF of Y, and then take the derivative to find its PDF. We have

$$
\mathbf{P}(Y \leq y)=\mathbf{P}\left(e^{X} \leq y\right)= \begin{cases}\mathbf{P}(X \leq \ln y), & \text { if } y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Therefore,

$$
\begin{aligned}
f_{Y}(y) & = \begin{cases}\frac{d}{d x} F_{X}(\ln y), & \text { if } y>0, \\
0, & \text { otherwise },\end{cases} \\
& = \begin{cases}\frac{1}{y} f_{X}(\ln y), & \text { if } y>0, \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

When X is uniform on $[0,1]$, the answer simplifies to

$$
f_{Y}(y)= \begin{cases}\frac{1}{y}, & \text { if } 0<y \leq e \\ 0, & \text { otherwise }\end{cases}
$$

Solution to Problem 4.3. Let $Y=|X|^{1 / 3}$. We have

$$
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(|X|^{1 / 3} \leq y\right)=\mathbf{P}\left(-y^{3} \leq X \leq y^{3}\right)=F_{X}\left(y^{3}\right)-F_{X}\left(-y^{3}\right)
$$

and therefore, by differentiating,

$$
f_{Y}(y)=3 y^{2} f_{X}\left(y^{3}\right)+3 y^{2} f_{X}\left(-y^{3}\right), \quad \text { for } y>0 .
$$

Let $Y=|X|^{1 / 4}$. We have

$$
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(|X|^{1 / 4} \leq y\right)=\mathbf{P}\left(-y^{4} \leq X \leq y^{4}\right)=F_{X}\left(y^{4}\right)-F_{X}\left(-y^{4}\right)
$$

and therefore, by differentiating,

$$
f_{Y}(y)=4 y^{3} f_{X}\left(y^{4}\right)+4 y^{3} f_{X}\left(-y^{4}\right), \quad \text { for } y>0
$$

Solution to Problem 4.4. We have

$$
F_{Y}(y)= \begin{cases}0, & \text { if } y \leq 0 \\ \mathbf{P}(5-y \leq X \leq 5)+\mathbf{P}(20-y \leq X \leq 20), & \text { if } 0 \leq y \leq 5 \\ \mathbf{P}(20-y \leq X \leq 20), & \text { if } 5<y \leq 15 \\ 1, & \text { if } y>15\end{cases}
$$

Using the CDF of X, we have

$$
\begin{gathered}
\mathbf{P}(5-y \leq X \leq 5)=F_{X}(5)-F_{X}(5-y) \\
\mathbf{P}(20-y \leq X \leq 20)=F_{X}(20)-F_{X}(20-y)
\end{gathered}
$$

Thus,

$$
F_{Y}(y)= \begin{cases}0, & \text { if } y \leq 0 \\ F_{X}(5)-F_{X}(5-y)+F_{X}(20)-F_{X}(20-y), & \text { if } 0 \leq y \leq 5 \\ F_{X}(20)-F_{X}(20-y), & \text { if } 5<y \leq 15 \\ 1, & \text { if } y>15\end{cases}
$$

Differentiating, we obtain

$$
f_{Y}(y)= \begin{cases}f_{X}(5-y)+f_{X}(20-y), & \text { if } 0 \leq y \leq 5 \\ f_{X}(20-y), & \text { if } 5<y \leq 15 \\ 0, & \text { otherwise }\end{cases}
$$

consistent with the result of Example 3.14.
Solution to Problem 4.5. Let $Z=|X-Y|$. We have

$$
F_{Z}(z)=P(|X-Y| \leq z)=1-(1-z)^{2} .
$$

(To see this, draw the event of interest as a subset of the unit square and calculate its area.) Taking derivatives, the desired PDF is

$$
f_{Z}(z)= \begin{cases}2(1-z), & \text { if } 0 \leq z \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Solution to Problem 4.6. Let $Z=|X-Y|$. To find the CDF, we integrate the joint PDF of X and Y over the region where $|X-Y| \leq z$ for a given z. In the case where $z \leq 0$ or $z \geq 1$, the CDF is 0 and 1 , respectively. In the case where $0<z<1$, we have

$$
F_{Z}(z)=\mathbf{P}(X-Y \leq z, X \geq Y)+\mathbf{P}(Y-X \leq z, X<Y)
$$

The events $\{X-Y \leq z, X \geq Y\}$ and $\{Y-X \leq z, X<Y\}$ can be identified with subsets of the given triangle. After some calculation using triangle geometry, the areas of these subsets can be verified to be $z / 2+z^{2} / 4$ and $1 / 4-(1-z)^{2} / 4$, respectively. Therefore, since $f_{X, Y}(x, y)=1$ for all (x, y) in the given triangle,

$$
F_{Z}(z)=\left(\frac{z}{2}+\frac{z^{2}}{4}\right)+\left(\frac{1}{4}-\frac{(1-z)^{2}}{4}\right)=z .
$$

Thus,

$$
F_{Z}(z)= \begin{cases}0, & \text { if } z \leq 0 \\ z, & \text { if } 0<z<1, \\ 1, & \text { if } z \geq 1\end{cases}
$$

By taking the derivative with respect to z, we obtain

$$
f_{Z}(z)= \begin{cases}1, & \text { if } 0 \leq z \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Solution to Problem 4.7. Let X and Y be the two points, and let $Z=\max \{X, Y\}$. For any $t \in[0,1]$, we have

$$
\mathbf{P}(Z \leq t)=\mathbf{P}(X \leq t) \mathbf{P}(Y \leq t)=t^{2}
$$

and by differentiating, the corresponding PDF is

$$
f_{Z}(z)= \begin{cases}0, & \text { if } z \leq 0 \\ 2 z, & \text { if } 0 \leq z \leq 1 \\ 0, & \text { if } z \geq 1\end{cases}
$$

Thus, we have

$$
\mathbf{E}[Z]=\int_{-\infty}^{\infty} z f_{Z}(z) d z=\int_{0}^{1} 2 z^{2} d z=\frac{2}{3} .
$$

The distance of the largest of the two points to the right endpoint is $1-Z$, and its expected value is $1-\mathbf{E}[Z]=1 / 3$. A symmetric argument shows that the distance of the smallest of the two points to the left endpoint is also $1 / 3$. Therefore, the expected distance between the two points must also be $1 / 3$.
Solution to Problem 4.8. Note that $f_{X}(x)$ and $f_{Y}(z-x)$ are nonzero only when $x \geq 0$ and $x \leq z$, respectively. Thus, in the convolution formula, we only need to integrate for x ranging from 0 to z :
$f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x=\int_{0}^{z} \lambda e^{-\lambda x} \lambda e^{-\lambda(z-x)} d x=\lambda^{2} e^{-z} \int_{0}^{z} d x=\lambda^{2} z e^{-\lambda z}$.

Solution to Problem 4.9. Let $Z=X-Y$. We will first calculate the $\operatorname{CDF} F_{Z}(z)$ by considering separately the cases $z \geq 0$ and $z<0$. For $z \geq 0$, we have (see the left side of Fig. 4.6)

$$
\begin{aligned}
F_{Z}(z) & =\mathbf{P}(X-Y \leq z) \\
& =1-\mathbf{P}(X-Y>z) \\
& =1-\int_{0}^{\infty}\left(\int_{z+y}^{\infty} f_{X, Y}(x, y) d x\right) d y \\
& =1-\int_{0}^{\infty} \mu e^{-\mu y}\left(\int_{z+y}^{\infty} \lambda e^{-\lambda x} d x\right) d y \\
& =1-\int_{0}^{\infty} \mu e^{-\mu y} e^{-\lambda(z+y)} d y \\
& =1-e^{-\lambda z} \int_{0}^{\infty} \mu e^{-(\lambda+\mu) y} d y \\
& =1-\frac{\mu}{\lambda+\mu} e^{-\lambda z}
\end{aligned}
$$

For the case $z<0$, we have using the preceding calculation

$$
F_{Z}(z)=1-F_{Z}(-z)=1-\left(1-\frac{\lambda}{\lambda+\mu} e^{-\mu(-z)}\right)=\frac{\lambda}{\lambda+\mu} e^{\mu z}
$$

Combining the two cases $z \geq 0$ and $z<0$, we obtain

$$
F_{Z}(z)= \begin{cases}1-\frac{\mu}{\lambda+\mu} e^{-\lambda z}, & \text { if } z \geq 0 \\ \frac{\lambda}{\lambda+\mu} e^{\mu z}, & \text { if } z<0\end{cases}
$$

The PDF of Z is obtained by differentiating its CDF. We have

$$
f_{Z}(z)= \begin{cases}\frac{\lambda \mu}{\lambda+\mu} e^{-\lambda z}, & \text { if } z \geq 0 \\ \frac{\lambda \mu}{\lambda+\mu} e^{\mu z}, & \text { if } z<0\end{cases}
$$

For an alternative solution, fix some $z \geq 0$ and note that $f_{Y}(x-z)$ is nonzero only when $x \geq z$. Thus,

$$
\begin{aligned}
f_{X-Y}(z) & =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(x-z) d x \\
& =\int_{z}^{\infty} \lambda e^{-\lambda x} \mu e^{-\mu(x-z)} d x \\
& =\lambda \mu e^{\lambda z} \int_{z}^{\infty} e^{-(\lambda+\mu) x} d x \\
& =\lambda \mu e^{\lambda z} \frac{1}{\lambda+\mu} e^{-(\lambda+\mu) z} \\
& =\frac{\lambda \mu}{\lambda+\mu} e^{-\mu z}
\end{aligned}
$$

in agreement with the earlier answer. The solution for the case $z<0$ is obtained with a similar calculation.

Solution to Problem 4.10. We first note that the range of possible values of Z are the integers from the range $[1,5]$. Thus we have

$$
p_{Z}(z)=0, \quad \text { if } z \neq 1,2,3,4,5
$$

We calculate $p_{Z}(z)$ for each of the values $z=1,2,3,4,5$, using the convolution formula. We have

$$
p_{Z}(1)=\sum_{x} p_{X}(x) p_{Y}(1-x)=p_{X}(1) p_{Y}(0)=\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{6}
$$

where the second equality above is based on the fact that for $x \neq 1$ either $p_{X}(x)$ or $p_{Y}(1-x)$ (or both) is zero. Similarly, we obtain

$$
\begin{gathered}
p_{Z}(2)=p_{X}(1) p_{Y}(1)+p_{X}(2) p_{Y}(0)=\frac{1}{3} \cdot \frac{1}{3}+\frac{1}{3} \cdot \frac{1}{2}=\frac{5}{18}, \\
p_{Z}(3)=p_{X}(1) p_{Y}(2)+p_{X}(2) p_{Y}(1)+p_{X}(3) p_{Y}(0)=\frac{1}{3} \cdot \frac{1}{6}+\frac{1}{3} \cdot \frac{1}{3}+\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{3}, \\
p_{Z}(4)=p_{X}(2) p_{Y}(2)+p_{X}(3) p_{Y}(1)=\frac{1}{3} \cdot \frac{1}{6}+\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{6}, \\
p_{Z}(5)=p_{X}(3) p_{Y}(2)=\frac{1}{3} \cdot \frac{1}{6}=\frac{1}{18} .
\end{gathered}
$$

Solution to Problem 4.11. The convolution of two Poisson PMFs is of the form

$$
\sum_{i=0}^{k} \frac{\lambda^{i} e^{-\lambda}}{i!} \cdot \frac{\mu^{k-i} e^{-\mu}}{(k-i)!}=e^{-(\lambda+\mu)} \sum_{i=0}^{k} \frac{\lambda^{i} \mu^{k-i}}{i!(k-i)!}
$$

We have

$$
(\lambda+\mu)^{k}=\sum_{i=0}^{k}\binom{k}{i} \lambda^{i} \mu^{k-i}=\sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda^{i} \mu^{k-i}
$$

Thus, the desired PMF is

$$
\frac{e^{-(\lambda+\mu)}}{k!} \sum_{i=0}^{k} \frac{k!\lambda^{i} \mu^{k-i}}{i!(k-i)!}=\frac{e^{-(\lambda+\mu)}}{k!}(\lambda+\mu)^{k},
$$

which is a Poisson PMF with mean $\lambda+\mu$.
Solution to Problem 4.12. Let $V=X+Y$. As in Example 4.10, the PDF of V is

$$
f_{V}(v)= \begin{cases}v, & 0 \leq v \leq 1 \\ 2-v, & 1 \leq v \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

Let $W=X+Y+Z=V+Z$. We convolve the PDFs f_{V} and f_{Z}, to obtain

$$
f_{W}(w)=\int f_{V}(v) f_{Z}(w-v) d v
$$

We first need to determine the limits of the integration. Since $f_{V}(v)=0$ outside the range $0 \leq v \leq 2$, and $f_{W}(w-v)=0$ outside the range $0 \leq w-v \leq 1$, we see that the integrand can be nonzero only if

$$
0 \leq v \leq 2, \quad \text { and } \quad w-1 \leq v \leq w .
$$

We consider three separate cases. If $w \leq 1$, we have

$$
f_{W}(w)=\int_{0}^{w} f_{V}(v) f_{Z}(w-v) d v=\int_{0}^{w} v d v=\frac{w^{2}}{2} .
$$

If $1 \leq w \leq 2$, we have

$$
\begin{aligned}
f_{W}(w) & =\int_{w-1}^{w} f_{V}(v) f_{Z}(w-v) d v \\
& =\int_{w-1}^{1} v d v+\int_{1}^{w}(2-v) d v \\
& =\frac{1}{2}-\frac{(w-1)^{2}}{2}-\frac{(w-2)^{2}}{2}+\frac{1}{2} .
\end{aligned}
$$

Finally, if $2 \leq w \leq 3$, we have

$$
f_{W}(w)=\int_{w-1}^{2} f_{V}(v) f_{Z}(w-v) d v=\int_{w-1}^{2}(2-v) d v=\frac{(3-w)^{2}}{2}
$$

To summarize,

$$
f_{W}(w)= \begin{cases}w^{2} / 2, & 0 \leq w \leq 1 \\ 1-(w-1)^{2} / 2-(2-w)^{2} / 2, & 1 \leq w \leq 2 \\ (3-w)^{2} / 2, & 2 \leq w \leq 3 \\ 0, & \text { otherwise }\end{cases}
$$

Solution to Problem 4.13. We have $X-Y=X+Z-(a+b)$, where $Z=a+b-Y$ is distributed identically with X and Y. Thus, the PDF of $X+Z$ is the same as the PDF of $X+Y$, and the PDF of $X-Y$ is obtained by shifting the PDF of $X+Y$ to the left by $a+b$.

Solution to Problem 4.14. For all $z \geq 0$, we have, using the independence of X and Y, and the form of the exponential CDF,

$$
\begin{aligned}
F_{Z}(z) & =\mathbf{P}(\min \{X, Y\} \leq z) \\
& =1-\mathbf{P}(\min \{X, Y\}>z) \\
& =1-\mathbf{P}(X>z, Y>z) \\
& =1-\mathbf{P}(X>z) \mathbf{P}(Y>z) \\
& =1-e^{-\lambda z} e^{-\mu z} \\
& =1-e^{-(\lambda+\mu) z} .
\end{aligned}
$$

This is recognized as the exponential CDF with parameter $\lambda+\mu$. Thus, the minimum of two independent exponentials with parameters λ and μ is an exponential with parameter $\lambda+\mu$.

Solution to Problem 4.17. Because the covariance remains unchanged when we add a constant to a random variable, we can assume without loss of generality that X and Y have zero mean. We then have

$$
\operatorname{cov}(X-Y, X+Y)=\mathbf{E}[(X-Y)(X+Y)]=\mathbf{E}\left[X^{2}\right]-\mathbf{E}\left[Y^{2}\right]=\operatorname{var}(X)-\operatorname{var}(Y)=0
$$

since X and Y were assumed to have the same variance.
Solution to Problem 4.18. We have

$$
\operatorname{cov}(R, S)=\mathbf{E}[R S]-\mathbf{E}[R] \mathbf{E}[S]=\mathbf{E}\left[W X+W Y+X^{2}+X Y\right]=\mathbf{E}\left[X^{2}\right]=1
$$

and

$$
\operatorname{var}(R)=\operatorname{var}(S)=2,
$$

so

$$
\rho(R, S)=\frac{\operatorname{cov}(R, S)}{\sqrt{\operatorname{var}(R) \operatorname{var}(S)}}=\frac{1}{2}
$$

We also have

$$
\operatorname{cov}(R, T)=\mathbf{E}[R T]-\mathbf{E}[R] \mathbf{E}[T]=\mathbf{E}[W Y+W Z+X Y+X Z]=0
$$

so that

$$
\rho(R, T)=0 .
$$

Solution to Problem 4.19. To compute the correlation coefficient

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

we first compute the covariance:

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\mathbf{E}[X Y]-\mathbf{E}[X] \mathbf{E}[Y] \\
& =\mathbf{E}\left[a X+b X^{2}+c X^{3}\right]-\mathbf{E}[X] \mathbf{E}[Y] \\
& =a \mathbf{E}[X]+b \mathbf{E}\left[X^{2}\right]+c \mathbf{E}\left[X^{3}\right] \\
& =b .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\operatorname{var}(Y) & =\operatorname{var}\left(a+b X+c X^{2}\right) \\
& =\mathbf{E}\left[\left(a+b X+c X^{2}\right)^{2}\right]-\left(\mathbf{E}\left[a+b X+c X^{2}\right]\right)^{2} \\
& =\left(a^{2}+2 a c+b^{2}+3 c^{2}\right)-\left(a^{2}+c^{2}+2 a c\right) \\
& =b^{2}+2 c^{2},
\end{aligned}
$$

and therefore, using the fact $\operatorname{var}(X)=1$,

$$
\rho(X, Y)=\frac{b}{\sqrt{b^{2}+2 c^{2}}}
$$

Solution to Problem 4.22. If the gambler's fortune at the beginning of a round is a, the gambler bets $a(2 p-1)$. He therefore gains $a(2 p-1)$ with probability p, and loses $a(2 p-1)$ with probability $1-p$. Thus, his expected fortune at the end of a round is

$$
a(1+p(2 p-1)-(1-p)(2 p-1))=a\left(1+(2 p-1)^{2}\right)
$$

Let X_{k} be the fortune after the k th round. Using the preceding calculation, we have

$$
\mathbf{E}\left[X_{k+1} \mid X_{k}\right]=\left(1+(2 p-1)^{2}\right) X_{k}
$$

Using the law of iterated expectations, we obtain

$$
\mathbf{E}\left[X_{k+1}\right]=\left(1+(2 p-1)^{2}\right) \mathbf{E}\left[X_{k}\right],
$$

and

$$
\mathbf{E}\left[X_{1}\right]=\left(1+(2 p-1)^{2}\right) x
$$

We conclude that

$$
\mathbf{E}\left[X_{n}\right]=\left(1+(2 p-1)^{2}\right)^{n} x
$$

Solution to Problem 4.23. (a) Let W be the number of hours that Nat waits. We have

$$
\mathbf{E}[X]=\mathbf{P}(0 \leq X \leq 1) \mathbf{E}[W \mid 0 \leq X \leq 1]+\mathbf{P}(X>1) \mathbf{E}[W \mid X>1]
$$

Since $W>0$ only if $X>1$, we have

$$
\mathbf{E}[W]=\mathbf{P}(X>1) \mathbf{E}[W \mid X>1]=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
$$

(b) Let D be the duration of a date. We have $\mathbf{E}[D \mid 0 \leq X \leq 1]=3$. Furthermore, when $X>1$, the conditional expectation of D given X is $(3-X) / 2$. Hence, using the law of iterated expectations,

$$
\mathbf{E}[D \mid X>1]=\mathbf{E}[\mathbf{E}[D \mid X] \mid X>1]=\mathbf{E}\left[\left.\frac{3-X}{2} \right\rvert\, X>1\right]
$$

Therefore,

$$
\begin{aligned}
\mathbf{E}[D] & =\mathbf{P}(0 \leq X \leq 1) \mathbf{E}[D \mid 0 \leq X \leq 1]+\mathbf{P}(X>1) \mathbf{E}[D \mid X>1] \\
& =\frac{1}{2} \cdot 3+\frac{1}{2} \cdot \mathbf{E}\left[\left.\frac{3-X}{2} \right\rvert\, X>1\right] \\
& =\frac{3}{2}+\frac{1}{2}\left(\frac{3}{2}-\frac{\mathbf{E}[X \mid X>1]}{2}\right) \\
& =\frac{3}{2}+\frac{1}{2}\left(\frac{3}{2}-\frac{3 / 2}{2}\right) \\
& =\frac{15}{8} .
\end{aligned}
$$

(c) The probability that Pat will be late by more than 45 minutes is $1 / 8$. The number of dates before breaking up is the sum of two geometrically distributed random variables with parameter $1 / 8$, and its expected value is $2 \cdot 8=16$.
Solution to Problem 4.24. (a) Consider the following two random variables:
$X=$ amount of time the professor devotes to his task [exponentially distributed with parameter $\lambda(y)=1 /(5-y)]$;
$Y=$ length of time between 9 a.m. and his arrival (uniformly distributed between 0 and 4).

Note that $\mathbf{E}[Y]=2$. We have

$$
\mathbf{E}[X \mid Y=y]=\frac{1}{\lambda(y)}=5-y
$$

which implies that

$$
\mathbf{E}[X \mid Y]=5-Y
$$

and

$$
\mathbf{E}[X]=\mathbf{E}[\mathbf{E}[X \mid Y]]=\mathbf{E}[5-Y]=5-\mathbf{E}[Y]=5-2=3
$$

(b) Let Z be the length of time from 9 a.m. until the professor completes the task. Then,

$$
Z=X+Y
$$

We already know from part (a) that $\mathbf{E}[X]=3$ and $\mathbf{E}[Y]=2$, so that

$$
\mathbf{E}[Z]=\mathbf{E}[X]+\mathbf{E}[Y]=3+2=5 .
$$

Thus the expected time that the professor leaves his office is 5 hours after 9 a.m.
(c) We define the following random variables:
$W=$ length of time between 9 a.m. and arrival of the Ph.D. student (uniformly distributed between 9 a.m. and 5 p.m.).
$R=$ amount of time the student will spend with the professor, if he finds the professor (uniformly distributed between 0 and 1 hour).
$T=$ amount of time the professor will spend with the student.
Let also F be the event that the student finds the professor.
To find $\mathbf{E}[T]$, we write

$$
\mathbf{E}[T]=\mathbf{P}(F) \mathbf{E}[T \mid F]+\mathbf{P}\left(F^{c}\right) \mathbf{E}\left[T \mid F^{c}\right]
$$

Using the problem data,

$$
\mathbf{E}[T \mid F]=\mathbf{E}[R]=\frac{1}{2}
$$

(this is the expected value of a uniformly distribution ranging from 0 to 1),

$$
\mathbf{E}\left[T \mid F^{c}\right]=0
$$

(since the student leaves if he does not find the professor). We have

$$
\mathbf{E}[T]=\mathbf{E}[T \mid F] \mathbf{P}(F)=\frac{1}{2} \mathbf{P}(F),
$$

so we need to find $\mathbf{P}(F)$.
In order for the student to find the professor, his arrival should be between the arrival and the departure of the professor. Thus

$$
\mathbf{P}(F)=\mathbf{P}(Y \leq W \leq X+Y)
$$

We have that W can be between 0 (9 a.m.) and 8 (5 p.m.), but $X+Y$ can be any value greater than 0 . In particular, it may happen that the sum is greater than the upper bound for W. We write

$$
\mathbf{P}(F)=\mathbf{P}(Y \leq W \leq X+Y)=1-(\mathbf{P}(W<Y)+\mathbf{P}(W>X+Y))
$$

We have

$$
\mathbf{P}(W<Y)=\int_{0}^{4} \frac{1}{4} \int_{0}^{y} \frac{1}{8} d w d y=\frac{1}{4}
$$

and

$$
\begin{aligned}
\mathbf{P}(W>X+Y) & =\int_{0}^{4} \mathbf{P}(W>X+Y \mid Y=y) f_{Y}(y) d y \\
& =\int_{0}^{4} \mathbf{P}(X<W-Y \mid Y=y) f_{Y}(y) d y \\
& =\int_{0}^{4} \int_{y}^{8} F_{X \mid Y}(w-y) f_{W}(w) f_{Y}(y) d w d y \\
& =\int_{0}^{4} \frac{1}{4} \int_{y}^{8} \frac{1}{8} \int_{0}^{w-y} \frac{1}{5-y} e^{-\frac{x}{5-y}} d x d w d y \\
& =\frac{12}{32}+\frac{1}{32} \int_{0}^{4}(5-y) e^{-\frac{8-y}{5-y}} d y .
\end{aligned}
$$

Integrating numerically, we have

$$
\int_{0}^{4}(5-y) e^{-\frac{8-y}{5-y}} d y=1.7584
$$

Thus,

$$
\mathbf{P}(Y \leq W \leq X+Y)=1-(\mathbf{P}(W<Y)+\mathbf{P}(W>X+Y))=1-0.68=0.32
$$

The expected amount of time the professor will spend with the student is then

$$
\mathbf{E}[T]=\frac{1}{2} \mathbf{P}(F)=\frac{1}{2} 0.32=0.16=9.6 \mathrm{mins} .
$$

Next, we want to find the expected time the professor will leave his office. Let Z be the length of time measured from 9 a.m. until he leaves his office. If the professor
doesn't spend any time with the student, then Z will be equal to $X+Y$. On the other hand, if the professor is interrupted by the student, then the length of time will be equal to $X+Y+R$. This is because the professor will spend the same amount of total time on the task regardless of whether he is interrupted by the student. Therefore,

$$
\mathbf{E}[Z]=\mathbf{P}(F) \mathbf{E}[Z \mid F]+\mathbf{P}\left(F^{c}\right) \mathbf{E}\left[Z \mid F^{c}\right]=\mathbf{P}(F) \mathbf{E}[X+Y+R]+\mathbf{P}\left(F^{c}\right) \mathbf{E}[X+Y] .
$$

Using the results of the earlier calculations,

$$
\begin{gathered}
\mathbf{E}[X+Y]=5 \\
\mathbf{E}[X+Y+R]=\mathbf{E}[X+Y]+\mathbf{E}[R]=5+\frac{1}{2}=\frac{11}{2} .
\end{gathered}
$$

Therefore,

$$
\mathbf{E}[Z]=0.68 \cdot 5+0.32 \cdot \frac{11}{2}=5.16
$$

Thus the expected time the professor will leave his office is 5.16 hours after 9 a.m.
Solution to Problem 4.29. The transform is given by

$$
M(s)=\mathbf{E}\left[e^{s X}\right]=\frac{1}{2} e^{s}+\frac{1}{4} e^{2 s}+\frac{1}{4} e^{3 s}
$$

We have

$$
\begin{gathered}
\mathbf{E}[X]=\left.\frac{d}{d s} M(s)\right|_{s=0}=\frac{1}{2}+\frac{2}{4}+\frac{3}{4}=\frac{7}{4}, \\
\mathbf{E}\left[X^{2}\right]=\left.\frac{d^{2}}{d s^{2}} M(s)\right|_{s=0}=\frac{1}{2}+\frac{4}{4}+\frac{9}{4}=\frac{15}{4}, \\
\mathbf{E}\left[X^{3}\right]=\left.\frac{d^{3}}{d s^{3}} M(s)\right|_{s=0}=\frac{1}{2}+\frac{8}{4}+\frac{27}{4}=\frac{37}{4} .
\end{gathered}
$$

Solution to Problem 4.30. The transform associated with X is

$$
M_{X}(s)=e^{s^{2} / 2}
$$

By taking derivatives with respect to s, we find that

$$
\mathbf{E}[X]=0, \quad \mathbf{E}\left[X^{2}\right]=1, \quad \mathbf{E}\left[X^{3}\right]=0, \quad \mathbf{E}\left[X^{4}\right]=3 .
$$

Solution to Problem 4.31. The transform is

$$
M(s)=\frac{\lambda}{\lambda-s} .
$$

Thus,

$$
\frac{d}{d s} M(s)=\frac{\lambda}{(\lambda-s)^{2}}, \quad \frac{d^{2}}{d s^{2}} M(s)=\frac{2 \lambda}{(\lambda-s)^{3}}, \quad \frac{d^{3}}{d s^{3}} M(s)=\frac{6 \lambda}{(\lambda-s)^{4}},
$$

$$
\frac{d^{4}}{d s^{4}} M(s)=\frac{24 \lambda}{(\lambda-s)^{5}}, \quad \frac{d^{5}}{d s^{5}} M(s)=\frac{120 \lambda}{(\lambda-s)^{6}} .
$$

By setting $s=0$, we obtain

$$
\mathbf{E}\left[X^{3}\right]=\frac{6}{\lambda^{3}}, \quad \mathbf{E}\left[X^{4}\right]=\frac{24}{\lambda^{4}}, \quad \mathbf{E}\left[X^{5}\right]=\frac{120}{\lambda^{5}} .
$$

Solution to Problem 4.32. (a) We must have $M(0)=1$. Only the first option satisfies this requirement.
(b) We have

$$
\mathbf{P}(X=0)=\lim _{s \rightarrow-\infty} M(s)=e^{2\left(e^{-1}-1\right)} \approx 0.2825
$$

Solution to Problem 4.33. We recognize this transform as corresponding to the following mixture of exponential PDFs:

$$
f_{X}(x)= \begin{cases}\frac{1}{3} \cdot 2 e^{-2 x}+\frac{2}{3} \cdot 3 e^{-3 x}, & \text { for } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

By the inversion theorem, this must be the desired PDF.
Solution to Problem 4.34. For $i=1,2,3$, let $X_{i}, i=1,2,3$, be a Bernoulli random variable that takes the value 1 if the i th player is successful. We have $X=X_{1}+X_{2}+X_{3}$. Let $q_{i}=1-p_{i}$. Convolution of the PMFs of X_{1} and X_{2} yields the PMF of $Z=X_{1}+X_{2}$:

$$
p_{Z}(z)= \begin{cases}q_{1} q_{2}, & \text { if } z=0 \\ q_{1} p_{2}+p_{1} q_{2}, & \text { if } z=1 \\ p_{1} p_{2}, & \text { if } z=2 \\ 0, & \text { otherwise }\end{cases}
$$

Convolution of the PMFs of Z and X_{3} yields the PMF of $X=X_{1}+X_{2}+X_{3}$:

$$
p_{X}(x)= \begin{cases}q_{1} q_{2} q_{3}, & \text { if } x=0 \\ p_{1} q_{2} q_{3}+q_{1} p_{2} q_{3}+q_{1} q_{2} p_{3}, & \text { if } x=1 \\ q_{1} p_{2} p_{3}+p_{1} q_{2} p_{3}+p_{1} p_{2} q_{3}, & \text { if } x=2 \\ p_{1} p_{2} p_{3}, & \text { if } x=3 \\ 0, & \text { otherwise }\end{cases}
$$

The transform associated with X is the product of the transforms associated with $X_{i}, i=1,2,3$. We have

$$
M_{X}(s)=\left(q_{1}+p_{1} e^{s}\right)\left(q_{2}+p_{2} e^{s}\right)\left(q_{3}+p_{3} e^{s}\right) .
$$

By carrying out the multiplications above, and by examining the coefficients of the terms $e^{k s}$, we obtain the probabilities $\mathbf{P}(X=k)$. These probabilities are seen to coincide with the ones computed by convolution.

Solution to Problem 4.35. We first find c by using the equation

$$
1=M_{X}(0)=c \cdot \frac{3+4+2}{3-1},
$$

so that $c=2 / 9$. We then obtain

$$
\mathbf{E}[X]=\left.\frac{d M_{X}}{d s}(s)\right|_{s=0}=\left.\frac{2}{9} \cdot \frac{\left(3-e^{s}\right)\left(8 e^{2 s}+6 e^{3 s}\right)+e^{s}\left(3+4 e^{2 s}+2 e^{3 s}\right)}{\left(3-e^{s}\right)^{2}}\right|_{s=0}=\frac{37}{18}
$$

We now use the identity

$$
\frac{1}{3-e^{s}}=\frac{1}{3} \cdot \frac{1}{1-e^{s} / 3}=\frac{1}{3}\left(1+\frac{e^{s}}{3}+\frac{e^{2 s}}{9}+\cdots\right)
$$

which is valid as long as s is small enough so that $e^{s}<3$. It follows that

$$
M_{X}(s)=\frac{2}{9} \cdot \frac{1}{3} \cdot\left(3+4 e^{2 s}+2 e^{3 s}\right) \cdot\left(1+\frac{e^{s}}{3}+\frac{e^{2 s}}{9}+\cdots\right)
$$

By identifying the coefficients of $e^{0 s}$ and e^{s}, we obtain

$$
p_{X}(0)=\frac{2}{9}, \quad \quad p_{X}(1)=\frac{2}{27}
$$

Let $A=\{X \neq 0\}$. We have

$$
p_{X \mid\{X \in A\}}(k)= \begin{cases}\frac{p_{X}(k)}{\mathbf{P}(A)}, & \text { if } k \neq 0, \\ 0, & \text { otherwise }\end{cases}
$$

so that

$$
\begin{aligned}
\mathbf{E}[X \mid X \neq 0] & =\sum_{k=1}^{\infty} k p_{X \mid A}(k) \\
& =\sum_{k=1}^{\infty} \frac{k p_{X}(k)}{\mathbf{P}(A)} \\
& =\frac{\mathbf{E}[X]}{1-p_{X}(0)} \\
& =\frac{37 / 18}{7 / 9} \\
& =\frac{37}{14}
\end{aligned}
$$

Solution to Problem 4.36. (a) We have $U=X$ if $X=1$, which happens with probability $1 / 3$, and $U=Z$ if $X=0$, which happens with probability $2 / 3$. Therefore, U is a mixture of random variables and the associated transform is

$$
M_{U}(s)=\mathbf{P}(X=1) M_{Y}(s)+\mathbf{P}(X=0) M_{Z}(s)=\frac{1}{3} \cdot \frac{2}{2-s}+\frac{2}{3} e^{3\left(e^{s}-1\right)}
$$

(b) Let $V=2 Z+3$. We have

$$
M_{V}(s)=e^{3 s} M_{Z}(2 s)=e^{3 s} e^{3\left(e^{2 s}-1\right)}=e^{3\left(s-1+e^{2 s}\right)}
$$

(c) Let $W=Y+Z$. We have

$$
M_{W}(s)=M_{Y}(s) M_{Z}(s)=\frac{2}{2-s} e^{3\left(e^{s}-1\right)} .
$$

Solution to Problem 4.37. Let X be the number of different types of pizza ordered. Let X_{i} be the random variable defined by

$$
X_{i}= \begin{cases}1, & \text { if a type } i \text { pizza is ordered by at least one customer }, \\ 0, & \text { otherwise } .\end{cases}
$$

We have $X=X_{1}+\cdots+X_{n}$, and by the law of iterated expectations,

$$
\mathbf{E}[X]=\mathbf{E}[\mathbf{E}[X \mid K]]=\mathbf{E}\left[\mathbf{E}\left[X_{1}+\cdots+X_{n} \mid K\right]\right]=n \mathbf{E}\left[\mathbf{E}\left[X_{1} \mid K\right]\right] .
$$

Furthermore, since the probability that a customer does not order a pizza of type 1 is $(n-1) / n$, we have

$$
\mathbf{E}\left[X_{1} \mid K=k\right]=1-\left(\frac{n-1}{n}\right)^{k}
$$

so that

$$
\mathbf{E}\left[X_{1} \mid K\right]=1-\left(\frac{n-1}{n}\right)^{K} .
$$

Thus, denoting

$$
p=\frac{n-1}{n}
$$

we have

$$
\mathbf{E}[X]=n \mathbf{E}\left[1-p^{K}\right]=n-n \mathbf{E}\left[p^{K}\right]=n-n \mathbf{E}\left[e^{K \log p}\right]=n-n M_{K}(\log p) .
$$

Solution to Problem 4.41. (a) Let N be the number of people that enter the elevator. The corresponding transform is $M_{N}(s)=e^{\lambda\left(e^{s}-1\right)}$. Let $M_{X}(s)$ be the common transform associated with the random variables X_{i}. Since X_{i} is uniformly distributed within $[0,1]$, we have

$$
M_{X}(s)=\frac{e^{s}-1}{s}
$$

The transform $M_{Y}(s)$ is found by starting with the transform $M_{N}(s)$ and replacing each occurrence of e^{s} with $M_{X}(s)$. Thus,

$$
M_{Y}(s)=e^{\lambda\left(M_{X}(s)-1\right)}=e^{\lambda\left(\frac{e^{s}-1}{s}-1\right)} .
$$

(b) We have using the chain rule

$$
\mathbf{E}[Y]=\left.\frac{d}{d s} M_{Y}(s)\right|_{s=0}=\left.\left.\frac{d}{d s} M_{X}(s)\right|_{s=0} \cdot \lambda e^{\lambda\left(M_{X}(s)-1\right)}\right|_{s=0}=\frac{1}{2} \cdot \lambda=\frac{\lambda}{2},
$$

where we have used the fact that $M_{X}(0)=1$.
(c) From the law of iterated expectations we obtain

$$
\mathbf{E}[Y]=\mathbf{E}[\mathbf{E}[Y \mid N]]=\mathbf{E}[N \mathbf{E}[X]]=\mathbf{E}[N] \mathbf{E}[X]=\frac{\lambda}{2} .
$$

Solution to Problem 4.42. Take X and Y to be normal with means 1 and 2, respectively, and very small variances. Consider the random variable that takes the value of X with some probability p and the value of Y with probability $1-p$. This random variable takes values near 1 and 2 with relatively high probability, but takes values near its mean (which is $3-2 p$) with relatively low probability. Thus, this random variable is not normal.

Now let N be a random variable taking only the values 1 and 2 with probabilities p and $1-p$, respectively. The sum of a number N of independent normal random variables with mean equal to 1 and very small variance is a mixture of the type discussed above, which is not normal.
Solution to Problem 4.43. (a) Using the total probability theorem, we have

$$
\mathbf{P}(X>4)=\sum_{k=0}^{4} \mathbf{P}(k \text { lights are red }) \mathbf{P}(X>4 \mid k \text { lights are red })
$$

We have

$$
\mathbf{P}(k \text { lights are red })=\binom{4}{k}\left(\frac{1}{2}\right)^{4}
$$

The conditional PDF of X given that k lights are red, is normal with mean k minutes and standard deviation $(1 / 2) \sqrt{k}$. Thus, X is a mixture of normal random variables and the transform associated with its (unconditional) PDF is the corresponding mixture of the transforms associated with the (conditional) normal PDFs. However, X is not normal, because a mixture of normal PDFs need not be normal. The probability $\mathbf{P}(X>4 \mid k$ lights are red) can be computed from the normal tables for each k, and $\mathbf{P}(X>4)$ is obtained by substituting the results in the total probability formula above.
(b) Let K be the number of traffic lights that are found to be red. We can view X as the sum of K independent normal random variables. Thus the transform associated with X can be found by replacing in the binomial transform $M_{K}(s)=\left(1 / 2+(1 / 2) e^{s}\right)^{4}$ the occurrence of e^{s} by the normal transform corresponding to $\mu=1$ and $\sigma=1 / 2$. Thus

$$
M_{X}(s)=\left(\frac{1}{2}+\frac{1}{2}\left(e^{\frac{(1 / 2)^{2} s^{2}}{2}+s}\right)\right)^{4} .
$$

Note that by using the formula for the transform, we cannot easily obtain the probability $\mathbf{P}(X>4)$.

Solution to Problem 4.44. (a) Using the random sum formulas, we have

$$
\begin{gathered}
\mathbf{E}[N]=\mathbf{E}[M] \mathbf{E}[K], \\
\operatorname{var}(N)=\mathbf{E}[M] \operatorname{var}(K)+(\mathbf{E}[K])^{2} \operatorname{var}(M)
\end{gathered}
$$

(b) Using the random sum formulas and the results of part (a), we have

$$
\begin{gathered}
\mathbf{E}[Y]=\mathbf{E}[N] \mathbf{E}[X]=\mathbf{E}[M] \mathbf{E}[K] \mathbf{E}[X] \\
\operatorname{var}(Y)=\mathbf{E}[N] \operatorname{var}(X)+(\mathbf{E}[X])^{2} \operatorname{var}(N) \\
= \\
=\mathbf{E}[M] \mathbf{E}[K] \operatorname{var}(X)+(\mathbf{E}[X])^{2}\left(\mathbf{E}[M] \operatorname{var}(K)+(\mathbf{E}[K])^{2} \operatorname{var}(M)\right)
\end{gathered}
$$

(c) Let N denote the total number of widgets in the crate, and let X_{i} denote the weight of the i th widget. The total weight of the crate is

$$
Y=X_{1}+\cdots+X_{N}
$$

with

$$
N=K_{1}+\cdots+K_{M},
$$

so the framework of part (b) applies. We have

$$
\begin{array}{ccc}
\mathbf{E}[M]=\frac{1}{p}, & \operatorname{var}(M)=\frac{1-p}{p^{2}}, & \text { (geometric formulas), } \\
\mathbf{E}[K]=\mu, & \operatorname{var}(M)=\mu, & \text { (Poisson formulas), } \\
\mathbf{E}[X]=\frac{1}{\lambda}, & \operatorname{var}(M)=\frac{1}{\lambda^{2}}, & \text { (exponential formulas). }
\end{array}
$$

Using these expressions into the formulas of part (b), we obtain $\mathbf{E}[Y]$ and $\operatorname{var}(Y)$, the mean and variance of the total weight of a crate.

