CHAPTER5

Solution to Problem 5.1. (a) We have $\sigma_{M_{n}}=1 / \sqrt{n}$, so in order that $\sigma_{M_{n}} \leq 0.01$, we must have $n \geq 10,000$.
(b) We want to have

$$
\mathbf{P}\left(\left|M_{n}-h\right| \leq 0.05\right) \geq 0.99
$$

Using the facts $h=\mathbf{E}\left[M_{n}\right], \sigma_{M_{n}}^{2}=1 / n$, and the Chebyshev inequality, we have

$$
\begin{aligned}
\mathbf{P}\left(\left|M_{n}-h\right| \leq 0.05\right) & =\mathbf{P}\left(\left|M_{n}-\mathbf{E}\left[M_{n}\right]\right| \leq 0.05\right) \\
& =1-\mathbf{P}\left(\left|M_{n}-\mathbf{E}\left[M_{n}\right]\right| \geq 0.05\right) \\
& \geq 1-\frac{1 / n}{(0.05)^{2}}
\end{aligned}
$$

Thus, we must have

$$
1-\frac{1 / n}{(0.05)^{2}} \geq 0.99
$$

which yields $n \geq 40,000$.
(c) Based on Example 5.3, $\sigma_{X_{i}}^{2} \leq(0.6)^{2} / 4$, so he should use 0.3 meters in place of 1.0 meters as the estimate of the standard deviation of the samples X_{i} in the calculations of parts (a) and (b). In the case of part (a), we have $\sigma_{M_{n}}=0.3 / \sqrt{n}$, so in order that $\sigma_{M_{n}} \leq 0.01$, we must have $n \geq 900$. In the case of part (b), we have $\sigma_{M_{n}}=0.3 / \sqrt{n}$, so in order that $\sigma_{M_{n}} \leq 0.01$, we must have $n \geq 900$. In the case of part (a), we must have

$$
1-\frac{0.09 / n}{(0.05)^{2}} \geq 0.99
$$

which yields $n \geq 3,600$.
Solution to Problem 5.4. Proceeding as in Example 5.5, the best guarantee that can be obtained from the Chebyshev inequality is

$$
\mathbf{P}\left(\left|M_{n}-f\right| \geq \epsilon\right) \leq \frac{1}{4 n \epsilon^{2}}
$$

(a) If ϵ is reduced to half its original value, and in order to keep the bound $1 /\left(4 n \epsilon^{2}\right)$ constant, the sample size n must be made four times larger.
(b) If the error probability δ is to be reduced to $\delta / 2$, while keeping ϵ the same, the sample size has to be doubled.
Solution to Problem 5.5. In cases (a), (b), and (c), we show that Y_{n} converges to 0 in probability. In case (d), we show that Y_{n} converges to 1 in probability.
(a) For any $\epsilon>0$, we have

$$
\mathbf{P}\left(\left|Y_{n}\right| \geq \epsilon\right)=0
$$

for all n with $1 / n<\epsilon$, so $\mathbf{P}\left(\left|Y_{n}\right| \geq \epsilon\right) \rightarrow 0$.
(b) For all $\epsilon \in(0,1)$, we have

$$
\mathbf{P}\left(\left|Y_{n}\right| \geq \epsilon\right)=\mathbf{P}\left(\left|X_{n}\right|^{n} \geq \epsilon\right)=\mathbf{P}\left(X_{n} \geq \epsilon^{1 / n}\right)+\mathbf{P}\left(X_{n} \leq-\epsilon^{1 / n}\right)=1-\epsilon^{1 / n}
$$

and the two terms in the right-hand side converge to 0 , since $\epsilon^{1 / n} \rightarrow 1$.
(c) Since X_{1}, X_{2}, \ldots are independent random variables, we have

$$
\mathbf{E}\left[Y_{n}\right]=\mathbf{E}\left[X_{1}\right] \cdots \mathbf{E}\left[X_{n}\right]=0
$$

Also

$$
\operatorname{var}\left(Y_{n}\right)=\mathbf{E}\left[Y_{n}^{2}\right]=\mathbf{E}\left[X_{1}^{2}\right] \cdots \mathbf{E}\left[X_{n}^{2}\right]=\operatorname{var}\left(X_{1}\right)^{n}=\left(\frac{4}{12}\right)^{n},
$$

so $\operatorname{var}\left(Y_{n}\right) \rightarrow 0$. Since all Y_{n} have 0 as a common mean, from Chebyshev's inequality it follows that Y_{n} converges to 0 in probability.
(d) We have for all $\epsilon \in(0,1)$, using the independence of X_{1}, X_{2}, \ldots,

$$
\begin{aligned}
\mathbf{P}\left(\left|Y_{n}-1\right| \geq \epsilon\right) & =\mathbf{P}\left(\max \left\{X_{1}, \ldots, X_{n}\right\} \geq 1+\epsilon\right)+\mathbf{P}\left(\max \left\{X_{1}, \ldots, X_{n}\right\} \leq 1-\epsilon\right) \\
& =\mathbf{P}\left(X_{1} \leq 1-\epsilon, \ldots, X_{n} \leq 1-\epsilon\right) \\
& =\left(\mathbf{P}\left(X_{1} \leq 1-\epsilon\right)\right)^{n} \\
& =\left(1-\frac{\epsilon}{2}\right)^{n} .
\end{aligned}
$$

Hence $\mathbf{P}\left(\left|Y_{n}-1\right| \geq \epsilon\right) \rightarrow 0$.
Solution to Problem 5.8. Let S be the number of times that the result was odd, which is a binomial random variable, with parameters $n=100$ and $p=0.5$, so that $\mathbf{E}[X]=100 \cdot 0.5=50$ and $\sigma_{S}=\sqrt{100 \cdot 0.5 \cdot 0.5}=\sqrt{25}=5$. Using the normal approximation to the binomial, we find

$$
\mathbf{P}(S>55)=\mathbf{P}\left(\frac{S-50}{5}>\frac{55-50}{5}\right) \approx 1-\Phi(1)=1-0.8413=0.1587
$$

A better approximation can be obtained by using the de Moivre-Laplace approximation, which yields

$$
\begin{aligned}
\mathbf{P}(S>55) & =\mathbf{P}(S \geq 55.5)=\mathbf{P}\left(\frac{S-50}{5}>\frac{55.5-50}{5}\right) \\
& \approx 1-\Phi(1.1)=1-0.8643=0.1357 .
\end{aligned}
$$

Solution to Problem 5.9. (a) Let S be the number of crash-free days, which is a binomial random variable with parameters $n=50$ and $p=0.95$, so that $\mathbf{E}[X]=$ $50 \cdot 0.95=47.5$ and $\sigma_{S}=\sqrt{50 \cdot 0.95 \cdot 0.05}=1.54$. Using the normal approximation to the binomial, we find

$$
\mathbf{P}(S \geq 45)=\mathbf{P}\left(\frac{S-47.5}{1.54} \geq \frac{45-47.5}{1.54}\right) \approx 1-\Phi(-1.62)=\Phi(1.62)=0.9474
$$

A better approximation can be obtained by using the de Moivre-Laplace approximation, which yields

$$
\begin{aligned}
\mathbf{P}(S \geq 45) & =\mathbf{P}(S>44.5)=\mathbf{P}\left(\frac{S-47.5}{1.54} \geq \frac{44.5-47.5}{1.54}\right) \\
& \approx 1-\Phi(-1.95)=\Phi(1.95)=0.9744 .
\end{aligned}
$$

(b) The random variable S is binomial with parameter $p=0.95$. However, the random variable $50-S$ (the number of crashes) is also binomial with parameter $p=0.05$. Since the Poisson approximation is exact in the limit of small p and large n, it will give more accurate results if applied to $50-S$. We will therefore approximate $50-S$ by a Poisson random variable with parameter $\lambda=50 \cdot 0.05=2.5$. Thus,

$$
\begin{aligned}
\mathbf{P}(S \geq 45) & =\mathbf{P}(50-S \leq 5) \\
& =\sum_{k=0}^{5} \mathbf{P}(n-S=k) \\
& =\sum_{k=0}^{5} e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =0.958 .
\end{aligned}
$$

It is instructive to compare with the exact probability which is

$$
\sum_{k=0}^{5}\binom{50}{k} 0.05^{k} \cdot 0.95^{50-k}=0.962
$$

Thus, the Poisson approximation is closer. This is consistent with the intuition that the normal approximation to the binomial works well when p is close to 0.5 or n is very large, which is not the case here. On the other hand, the calculations based on the normal approximation are generally less tedious.

Solution to Problem 5.10. (a) Let $S_{n}=X_{1}+\cdots+X_{n}$ be the total number of gadgets produced in n days. Note that the mean, variance, and standard deviation of S_{n} is $5 n, 9 n$, and $3 \sqrt{n}$, respectively. Thus,

$$
\begin{aligned}
\mathbf{P}\left(S_{100}<440\right) & =\mathbf{P}\left(S_{100} \leq 439.5\right) \\
& =\mathbf{P}\left(\frac{S_{100}-500}{30}<\frac{439.5-500}{30}\right) \\
& \approx \Phi\left(\frac{439.5-500}{30}\right) \\
& =\Phi(-2.02) \\
& =1-\Phi(2.02) \\
& =1-0.9783 \\
& =0.0217 .
\end{aligned}
$$

(b) The requirement $\mathbf{P}\left(S_{n} \geq 200+5 n\right) \leq 0.05$ translates to

$$
\mathbf{P}\left(\frac{S_{n}-5 n}{3 \sqrt{n}} \geq \frac{200}{3 \sqrt{n}}\right) \leq 0.05
$$

or, using a normal approximation,

$$
1-\Phi\left(\frac{200}{3 \sqrt{n}}\right) \leq 0.05
$$

and

$$
\Phi\left(\frac{200}{3 \sqrt{n}}\right) \geq 0.95
$$

From the normal tables, we obtain $\Phi(1.65) \approx 0.95$, and therefore,

$$
\frac{200}{3 \sqrt{n}} \geq 1.65
$$

which finally yields $n \leq 1632$.
(c) The event $N \geq 220$ (it takes at least 220 days to exceed 1000 gadgets) is the same as the event $S_{219} \leq 1000$ (no more than 1000 gadgets produced in the first 219 days). Thus,

$$
\begin{aligned}
\mathbf{P}(N \geq 220) & =\mathbf{P}\left(S_{219} \leq 1000\right) \\
& =\mathbf{P}\left(\frac{S_{219}-5 \cdot 219}{3 \sqrt{219}} \leq \frac{1000-5 \cdot 219}{3 \sqrt{219}}\right) \\
& =1-\Phi(2.14) \\
& =1-0.9838 \\
& =0.0162
\end{aligned}
$$

Solution to Problem 5.11. Note that W is the sample mean of 16 independent identically distributed random variables of the form $X_{i}-Y_{i}$, and a normal approximation is appropriate. The random variables $X_{i}-Y_{i}$ have zero mean, and variance equal to $2 / 12$. Therefore, the mean of W is zero, and its variance is $(2 / 12) / 16=1 / 96$. Thus,

$$
\begin{aligned}
\mathbf{P}(|W|<0.001) & =\mathbf{P}\left(\frac{|W|}{\sqrt{1 / 96}}<\frac{0.001}{\sqrt{1 / 96}}\right) \approx \Phi(0.001 \sqrt{96})-\Phi(-0.001 \sqrt{96}) \\
& =2 \Phi(0.001 \sqrt{96})-1=2 \Phi(0.0098)-1 \approx 2 \cdot 0.504-1=0.008
\end{aligned}
$$

Let us also point out a somewhat different approach that bypasses the need for the normal table. Let Z be a normal random variable with zero mean and standard deviation equal to $1 / \sqrt{96}$. The standard deviation of Z, which is about 0.1 , is much larger than 0.001 . Thus, within the interval $[-0.001,0.001]$, the PDF of Z is approximately constant. Using the formula $\mathbf{P}(z-\delta \leq Z \leq z+\delta) \approx f_{Z}(z) \cdot 2 \delta$, with $z=0$ and $\delta=0.001$, we obtain

$$
\mathbf{P}(|W|<0.001) \approx \mathbf{P}(-0.001 \leq Z \leq 0.001) \approx f_{Z}(0) \cdot 0.002=\frac{0.002}{\sqrt{2 \pi}(1 / \sqrt{96})}=0.0078
$$

