CHAPTER 5

Solution to Problem 5.1. (a) We have o, = 1/4/n, so in order that o, < 0.01,
we must have n > 10, 000.

(b) We want to have
P (|M, — h| < 0.05) >0.99.

Using the facts h = E[M,], 03; = 1/n, and the Chebyshev inequality, we have

P(|M, — h| < 0.05) = P(|M, — E[M,]| < 0.05)
=1-P(|M, — E[M,]| > 0.05)

1/n
>1- .
- (0.05)2
Thus, we must have
1/n
1-— >0.99
(0.05)2 — ’

which yields n > 40, 000.

(c) Based on Example 5.3, a§(i < (0.6)2/4, so he should use 0.3 meters in place of 1.0
meters as the estimate of the standard deviation of the samples X; in the calculations
of parts (a) and (b). In the case of part (a), we have oa,, = 0.3/4/n, so in order that
om, < 0.01, we must have n > 900. In the case of part (b), we have oa,, = 0.3/y/n,
so in order that oar, < 0.01, we must have n > 900. In the case of part (a), we must
have

1

0.09/n
— > 0.
(0.05)2 = 099

which yields n > 3, 600.

Solution to Problem 5.4. Proceeding as in Example 5.5, the best guarantee that
can be obtained from the Chebyshev inequality is

P(|M, — f|>¢€) < !

(a) If € is reduced to half its original value, and in order to keep the bound 1/(4ne?)
constant, the sample size n must be made four times larger.

(b) If the error probability § is to be reduced to /2, while keeping € the same, the
sample size has to be doubled.

Solution to Problem 5.5. In cases (a), (b), and (c), we show that Y, converges to
0 in probability. In case (d), we show that Y;, converges to 1 in probability.

(a) For any € > 0, we have
P(|Ya| >¢) =0,
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for all n with 1/n <€, so P(|Yn| > e) — 0.
(b) For all € € (0,1), we have

P([Ya] > ¢) =P(|Xa|" > ¢) =P(Xp > /") + P(X, < —/") =1 -7,

and the two terms in the right-hand side converge to 0, since €*/™ — 1.

(c) Since X1, X2,... are independent random variables, we have
E[Y,] = E[X1]---E[X,] =0.

Also e

var(¥,) = E[Y?] = BIX] - BIXZ] = var(X0)" = (35 )
so var(Y,) — 0. Since all ¥;, have 0 as a common mean, from Chebyshev’s inequality
it follows that Y, converges to 0 in probability.

(d) We have for all € € (0, 1), using the independence of X1, Xo, ...,

P(|Y, —1[ > ¢) =P(max{X1,...,X,} > 14¢) + P(max{X1,...,X,} <1—¢)
=PX1<1—¢...,Xn<1—¢)
=(Pxi<1-¢)"

-0-5)

Hence P(|Y,, — 1| > ¢) — 0.

Solution to Problem 5.8. Let S be the number of times that the result was odd,
which is a binomial random variable, with parameters n = 100 and p = 0.5, so that
E[X] = 100-0.5 = 50 and o5 = 4/100-0.5-0.5 = /25 = 5. Using the normal
approximation to the binomial, we find

S—50>55—50
5 5

P(S > 55) = P ( ) ~1— ®(1) =1 - 0.8413 = 0.1587.

A better approximation can be obtained by using the de Moivre-Laplace approx-
imation, which yields

P(S > 55) =P(S >55.5) =P (5_550 >

55.5 — 50)
5

~1—®(1.1) =1—0.8643 = 0.1357.

Solution to Problem 5.9. (a) Let S be the number of crash-free days, which is
a binomial random variable with parameters n = 50 and p = 0.95, so that E[X] =
50-0.95 =47.5 and o5 = v/50-0.95 - 0.05 = 1.54. Using the normal approximation to
the binomial, we find

S —47.5 > 45 —47.5
1.54 — 154

P(S>45) =P ( ) ~1— ®(—1.62) = B(1.62) = 0.9474.
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A better approximation can be obtained by using the de Moivre-Laplace approximation,
which yields

P(S >45) = P(S > 44.5) =P (5747.5 S 44.5747.5>

154 — 154
~1—®(—1.95) = B(1.95) = 0.9744.

(b) The random variable S is binomial with parameter p = 0.95. However, the random
variable 50 — S (the number of crashes) is also binomial with parameter p = 0.05. Since
the Poisson approximation is exact in the limit of small p and large n, it will give more
accurate results if applied to 50 —S. We will therefore approximate 50 — S by a Poisson
random variable with parameter A = 50 - 0.05 = 2.5. Thus,

P(S > 45) =P(50 — S < 5)

=) P(n—-S=k)
k=0

5
I
—2.°
k=0
= 0.958.

It is instructive to compare with the exact probability which is

5

Z (5k0) 0.05" - 0.95°°~* = 0.962.

k=0

Thus, the Poisson approximation is closer. This is consistent with the intuition that
the normal approximation to the binomial works well when p is close to 0.5 or n is very
large, which is not the case here. On the other hand, the calculations based on the
normal approximation are generally less tedious.

Solution to Problem 5.10. (a) Let S, = X1 + --- + X,, be the total number of
gadgets produced in n days. Note that the mean, variance, and standard deviation of
Sy, is 5n, 9n, and 3+/n, respectively. Thus,

P(Sloo < 440) = P(Sloo < 439.5)

_p (5100 — 500 < 439.5 — 500)
30 30
439.5 — 500

50 )
= ®(—2.02)

=1-—®(2.02)
=1-0.9783
= 0.0217.

~ O
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(b) The requirement P(S,, > 200 + 5n) < 0.05 translates to
Sn —5n 200
P{l———>—+1]<0.05
( 3vn T 3vn ) -

or, using a normal approximation,

1-® <200) < 0.05,
EN

200
o ==)>0095.
(3w”1) a

From the normal tables, we obtain ®(1.65) = 0.95, and therefore,

200 4 65,

N

and

which finally yields n < 1632.

(c) The event N > 220 (it takes at least 220 days to exceed 1000 gadgets) is the same
as the event S219 < 1000 (no more than 1000 gadgets produced in the first 219 days).
Thus,

P(N > 220) = P(S219 < 1000)

_P<52195'219 - 10005219)

3v219 T 3v/219
=1-—®(2.14)
=1-0.9838
=0.0162.

Solution to Problem 5.11. Note that W is the sample mean of 16 independent
identically distributed random variables of the form X; —Y;, and a normal approxima-
tion is appropriate. The random variables X; — Y; have zero mean, and variance equal
to 2/12. Therefore, the mean of W is zero, and its variance is (2/12)/16 = 1/96. Thus,

P(|W]<0.001) =P ( W oo ) ~ ©(0.001v/96) — @ ( — 0.001v/96)

V1/96  \/1/96
=28(0.001v96) — 1 = 2¢(0.0098) — 1 ~ 2 0.504 — 1 = 0.008.

Let us also point out a somewhat different approach that bypasses the need for
the normal table. Let Z be a normal random variable with zero mean and standard
deviation equal to 1/4/96. The standard deviation of Z, which is about 0.1, is much
larger than 0.001. Thus, within the interval [—0.001,0.001], the PDF of Z is approxi-
mately constant. Using the formula P(z — 6 < Z < z+40) = fz(z) - 29, with z = 0 and
6 = 0.001, we obtain

0.002

P(|W] < 0.001) ~ P(-0.001 < Z < 0.001) ~ fz(0) - 0.002 = NN ) = 0.0078.
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