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Solution to Problem 5.1. (a) We have σMn = 1/
√
n, so in order that σMn ≤ 0.01,

we must have n ≥ 10, 000.

(b) We want to have
P
(
|Mn − h| ≤ 0.05

)
≥ 0.99.

Using the facts h = E[Mn], σ2
Mn

= 1/n, and the Chebyshev inequality, we have

P
(
|Mn − h| ≤ 0.05

)
= P

(
|Mn −E[Mn]| ≤ 0.05

)
= 1−P

(
|Mn −E[Mn]| ≥ 0.05

)
≥ 1− 1/n

(0.05)2
.

Thus, we must have

1− 1/n

(0.05)2
≥ 0.99,

which yields n ≥ 40, 000.

(c) Based on Example 5.3, σ2
Xi

≤ (0.6)2/4, so he should use 0.3 meters in place of 1.0
meters as the estimate of the standard deviation of the samples Xi in the calculations
of parts (a) and (b). In the case of part (a), we have σMn = 0.3/

√
n, so in order that

σMn ≤ 0.01, we must have n ≥ 900. In the case of part (b), we have σMn = 0.3/
√
n,

so in order that σMn ≤ 0.01, we must have n ≥ 900. In the case of part (a), we must
have

1− 0.09/n

(0.05)2
≥ 0.99,

which yields n ≥ 3, 600.

Solution to Problem 5.4. Proceeding as in Example 5.5, the best guarantee that
can be obtained from the Chebyshev inequality is

P
(
|Mn − f | ≥ ε

)
≤ 1

4nε2
.

(a) If ε is reduced to half its original value, and in order to keep the bound 1/(4nε2)
constant, the sample size n must be made four times larger.

(b) If the error probability δ is to be reduced to δ/2, while keeping ε the same, the
sample size has to be doubled.

Solution to Problem 5.5. In cases (a), (b), and (c), we show that Yn converges to
0 in probability. In case (d), we show that Yn converges to 1 in probability.

(a) For any ε > 0, we have
P
(
|Yn| ≥ ε

)
= 0,
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for all n with 1/n < ε, so P
(
|Yn| ≥ ε

)
→ 0.

(b) For all ε ∈ (0, 1), we have

P
(
|Yn| ≥ ε

)
= P

(
|Xn|n ≥ ε

)
= P

(
Xn ≥ ε1/n

)
+ P

(
Xn ≤ −ε1/n

)
= 1− ε1/n,

and the two terms in the right-hand side converge to 0, since ε1/n → 1.

(c) Since X1, X2, . . . are independent random variables, we have

E[Yn] = E[X1] · · ·E[Xn] = 0.

Also

var(Yn) = E[Y 2
n ] = E[X2

1 ] · · ·E[X2
n] = var(X1)

n =
(

4

12

)n

,

so var(Yn) → 0. Since all Yn have 0 as a common mean, from Chebyshev’s inequality
it follows that Yn converges to 0 in probability.

(d) We have for all ε ∈ (0, 1), using the independence of X1, X2, . . .,

P
(
|Yn − 1| ≥ ε

)
= P

(
max{X1, . . . , Xn} ≥ 1 + ε

)
+ P

(
max{X1, . . . , Xn} ≤ 1− ε

)
= P(X1 ≤ 1− ε, . . . ,Xn ≤ 1− ε)

=
(
P(X1 ≤ 1− ε)

)n

=
(
1− ε

2

)n

.

Hence P
(
|Yn − 1| ≥ ε

)
→ 0.

Solution to Problem 5.8. Let S be the number of times that the result was odd,
which is a binomial random variable, with parameters n = 100 and p = 0.5, so that
E[X] = 100 · 0.5 = 50 and σS =

√
100 · 0.5 · 0.5 =

√
25 = 5. Using the normal

approximation to the binomial, we find

P(S > 55) = P
(
S − 50

5
>

55− 50

5

)
≈ 1− Φ(1) = 1− 0.8413 = 0.1587.

A better approximation can be obtained by using the de Moivre-Laplace approx-
imation, which yields

P(S > 55) = P(S ≥ 55.5) = P
(
S − 50

5
>

55.5− 50

5

)
≈ 1− Φ(1.1) = 1− 0.8643 = 0.1357.

Solution to Problem 5.9. (a) Let S be the number of crash-free days, which is
a binomial random variable with parameters n = 50 and p = 0.95, so that E[X] =
50 · 0.95 = 47.5 and σS =

√
50 · 0.95 · 0.05 = 1.54. Using the normal approximation to

the binomial, we find

P(S ≥ 45) = P
(
S − 47.5

1.54
≥ 45− 47.5

1.54

)
≈ 1− Φ(−1.62) = Φ(1.62) = 0.9474.
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A better approximation can be obtained by using the de Moivre-Laplace approximation,
which yields

P(S ≥ 45) = P(S > 44.5) = P
(
S − 47.5

1.54
≥ 44.5− 47.5

1.54

)
≈ 1− Φ(−1.95) = Φ(1.95) = 0.9744.

(b) The random variable S is binomial with parameter p = 0.95. However, the random
variable 50−S (the number of crashes) is also binomial with parameter p = 0.05. Since
the Poisson approximation is exact in the limit of small p and large n, it will give more
accurate results if applied to 50−S. We will therefore approximate 50−S by a Poisson
random variable with parameter λ = 50 · 0.05 = 2.5. Thus,

P(S ≥ 45) = P(50− S ≤ 5)

=

5∑
k=0

P(n− S = k)

=

5∑
k=0

e−λ λ
k

k!

= 0.958.

It is instructive to compare with the exact probability which is

5∑
k=0

(
50

k

)
0.05k · 0.9550−k = 0.962.

Thus, the Poisson approximation is closer. This is consistent with the intuition that
the normal approximation to the binomial works well when p is close to 0.5 or n is very
large, which is not the case here. On the other hand, the calculations based on the
normal approximation are generally less tedious.

Solution to Problem 5.10. (a) Let Sn = X1 + · · · + Xn be the total number of
gadgets produced in n days. Note that the mean, variance, and standard deviation of
Sn is 5n, 9n, and 3

√
n, respectively. Thus,

P(S100 < 440) = P(S100 ≤ 439.5)

= P
(
S100 − 500

30
<

439.5− 500

30

)
≈ Φ(

439.5− 500

30
)

= Φ(−2.02)

= 1− Φ(2.02)

= 1− 0.9783

= 0.0217.
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(b) The requirement P(Sn ≥ 200 + 5n) ≤ 0.05 translates to

P

(
Sn − 5n

3
√
n

≥ 200

3
√
n

)
≤ 0.05,

or, using a normal approximation,

1− Φ

(
200

3
√
n

)
≤ 0.05,

and

Φ

(
200

3
√
n

)
≥ 0.95.

From the normal tables, we obtain Φ(1.65) ≈ 0.95, and therefore,

200

3
√
n
≥ 1.65,

which finally yields n ≤ 1632.

(c) The event N ≥ 220 (it takes at least 220 days to exceed 1000 gadgets) is the same
as the event S219 ≤ 1000 (no more than 1000 gadgets produced in the first 219 days).
Thus,

P(N ≥ 220) = P(S219 ≤ 1000)

= P

(
S219 − 5 · 219

3
√

219
≤ 1000− 5 · 219

3
√

219

)
= 1− Φ(2.14)

= 1− 0.9838

= 0.0162.

Solution to Problem 5.11. Note that W is the sample mean of 16 independent
identically distributed random variables of the form Xi −Yi, and a normal approxima-
tion is appropriate. The random variables Xi − Yi have zero mean, and variance equal
to 2/12. Therefore, the mean of W is zero, and its variance is (2/12)/16 = 1/96. Thus,

P
(
|W | < 0.001

)
= P

(
|W |√
1/96

<
0.001√

1/96

)
≈ Φ

(
0.001

√
96
)
− Φ

(
− 0.001

√
96
)

= 2Φ
(
0.001

√
96
)
− 1 = 2Φ(0.0098)− 1 ≈ 2 · 0.504− 1 = 0.008.

Let us also point out a somewhat different approach that bypasses the need for
the normal table. Let Z be a normal random variable with zero mean and standard
deviation equal to 1/

√
96. The standard deviation of Z, which is about 0.1, is much

larger than 0.001. Thus, within the interval [−0.001, 0.001], the PDF of Z is approxi-
mately constant. Using the formula P(z− δ ≤ Z ≤ z+ δ) ≈ fZ(z) · 2δ, with z = 0 and
δ = 0.001, we obtain

P
(
|W | < 0.001

)
≈ P(−0.001 ≤ Z ≤ 0.001) ≈ fZ(0) · 0.002 =

0.002√
2π(1/

√
96)

= 0.0078.
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